首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以2-苯基-4,4'-二氨基二苯醚(p-ODA)、异构二苯醚二酐(ODPA)和苯乙炔基苯酐(PEPA)为原料,通过两步法合成了聚合度分别为1,2和3的酰亚胺树脂低聚物,并通过模压成型法制备了单向碳纤维增强的聚酰亚胺复合材料.表征了酰亚胺树脂低聚物的溶解性、熔体黏度及其固化物聚酰亚胺树脂的热性能,结果表明,聚酰亚胺树脂具有良好的溶解性,在N,N-二甲基乙酰胺(DMAc)、四氢呋喃(THF)及1,4-二氧六环等溶剂中的溶解度大于30%;所有酰亚胺树脂低聚物的最低熔体黏度均在10 Pa·s以下,具有良好的成型工艺性;聚酰亚胺树脂具有良好的热性能,玻璃化转变温度(Tg)最高可达300℃,5%热失重温度(T5%)最高可达545℃,碳纤维增强聚酰亚胺复合材料PIC-4,4'-ODPA-2具有最佳的高低温力学性能.  相似文献   

2.
为了获得兼具良好热性能和加工性能的聚酰亚胺树脂,设计合成了不对称二胺(3-氨基-苯基)-(4’-氨基-苯基)-乙炔(AMPA),含萘环的封端剂3-(萘-1-乙炔基)苯胺(NAA)以及含硅二酐双(3,4-二羧基苯基)二甲基硅烷二酐.为研究结构与性能的关系,引入4,4’-双邻苯二甲酸酐(ODPA)和间氨基苯乙炔(APA)为对照二酐和封端剂,制备了一系列分子链中含硅和内炔基团的聚酰亚胺树脂PI-Si-Ⅰ(以APA为封端剂)和PI-Si-Ⅱ(以NAA为封端剂),以及与之相对照的树脂PI-O-Ⅰ和PI-O-Ⅱ(二酐单体为ODPA). PI-Si树脂在常见溶剂如四氢呋喃中具有很好的溶解度,而PI-Si-Ⅱ树脂更是具有低的熔体黏度和100℃宽的加工窗口.热失重的结果显示固化树脂具有良好的耐热性能,5 wt%热失重温度(Td5)在547℃左右,质量残留率在79%左右;热裂解分析结果表明在聚酰亚胺主链中引入的硅和内炔基团在高温环境中形成硅氧硅结构和苯环等刚性结构,从而提高树脂的耐热性.  相似文献   

3.
耐高温可溶性聚酰亚胺树脂及其复合材料   总被引:1,自引:0,他引:1  
制备了2种耐高温可溶型聚酰亚胺树脂(PI-1, PI-2)及其复合材料, 系统研究了树脂的工艺性, 纯树脂固化物的热性能及其复合材料的界面形貌、 介电性能和力学性能. 研究结果表明, 树脂低聚物在极性非质子溶剂中具有良好的溶解性, 且熔体黏度较低, 表明其具有优异的加工性能. 两种树脂固化物在空气中的5%热失重温度均高于550 ℃, PI-1树脂的玻璃化转变温度(Tg)为430 ℃, PI-2树脂的Tg为380 ℃. 石英纤维/PI-1和石英纤维/PI-2复合材料具有较低的介电常数和介电损耗. 碳纤维/PI-1复合材料在420 ℃下的弯曲强度保持率可达62%, 层间剪切强度保持率可达48%, 具有较优异的高温力学性能. 采用普通模压工艺制备了厚度高达45 mm的复合材料制件, 进一步证明这2种树脂具有优异的工艺性.  相似文献   

4.
新型乙炔封端聚酰亚胺的制备及性能   总被引:2,自引:0,他引:2  
用双酚A型二醚二酐(BPADA)和3-乙炔基苯胺(m-APA)进行缩聚反应合成了乙炔基封端的聚酰亚胺预聚体, 并对预聚体的熔体黏度、稳定性和热性能等进行研究. 结果表明, 此类预聚体具有较宽的加工窗口和较低的加工温度, 适合模压成型工艺制备树脂基复合材料. 预聚体经250 ℃固化后显示了优异的热性能, 动态力学分析显示其玻璃化转变温度为363 ℃, 在氮气和空气气氛下5%热失重温度分别为490和492 ℃.  相似文献   

5.
硬质闭孔聚酰亚胺结构泡沫的结构调控与性能   总被引:1,自引:0,他引:1  
通过调控聚酰亚胺(PI)树脂主链结构中二苯羰基链段与不对称联苯链段的含量比例,制备了具有不同羰基含量的PI前驱体固体树脂。这些前驱体树脂都具有良好的熔融性,当加热至320~330℃时,PI树脂完全熔融形成低粘度熔体树脂;进一步提高加热温度时树脂熔体粘度由于发生交联反应而急剧增大。将前驱体树脂经加热发泡形成的热固性硬质闭孔PI泡沫具有很高的闭孔率(86%)和耐热性能(Tg353℃,T10519℃)。研究发现,在PI树脂主链结构中引入二苯甲酮链段可明显提高PI泡沫的韧性,而不会牺牲其力学强度和模量。  相似文献   

6.
用于树脂传递模塑成型的苯乙炔封端的酰亚胺预聚体制备   总被引:1,自引:0,他引:1  
采用4-苯乙炔苯酐(4-PEPA)、1,3-二(3-氨基苯氧基-4′-苯酰基)苯(BABB)和4,4′-双(3-氨基苯氧基)二苯甲酮(APBP)合成了两种苯乙炔苯酐封端的聚酰亚胺预聚体PI-1和PI-2, 并对预聚体的熔体黏度、稳定性、固化后树脂的热稳定性能和机械性能等进行了研究. 结果表明, 制备的预聚体具有较高产率(>95%); 与其它PEPA封端的聚酰亚胺相比, 两种预聚物在较低温度(200 ℃)时均具有很低的熔体黏度(1 Pa·s)和良好的熔体黏度稳定性, 固化后玻璃化温度达到300 ℃以上, 可适用于树脂传递模塑(RTM)成型制备耐高温高性能树脂基复合材料, 且在成型工艺上有了很大改善; 固化后的树脂具有优异的热稳定性能和良好的机械性能.  相似文献   

7.
采用预共聚法,以含硅芳炔树脂(PSA)和端乙炔基聚醚酰亚胺(PEI)为原料,制备了端乙炔基聚醚酰亚胺改性的含硅芳炔(PEI-PSA)树脂及其与T300碳纤维平纹布的复合材料T300/PEI-PSA。通过动态热机械分析(DMA)和X射线能谱仪(EDS)研究了溶剂、溶液浓度、反应温度对预共聚反应的影响,确定了预共聚反应的最佳条件,得到了均匀分散的PEI-PSA树脂。通过红外光谱(FT-IR)、核磁共振氢谱(1 H-NMR)、差示扫描量热(DSC)、热失重(TG)、DMA和EDS等表征了PEI、PEI-PSA树脂及T300/PEI-PSA复合材料的结构和性能。结果表明,当PEI质量分数为20%时,PEI-PSA树脂浇铸体的弯曲强度达44.5 MPa,较PSA树脂浇铸体提高了90.2%;T300/PEI-PSA复合材料的弯曲强度达602.7 MPa,较T300/PSA复合材料的弯曲强度提高了124%。  相似文献   

8.
利用哈克旋转流变仪在一定的温度和压力条件下对聚乳酸(PLA)熔体施加应变为正弦变化的振荡剪切场,从而对PLA分子链进行高效的降黏解缠.结果表明,当温度为190°C、样品厚度为1.5 mm时,PLA熔体在振动频率和剪切应变分别为3.5 Hz和50%处呈现最佳的降黏效果,其黏度相比于未经处理的熔体黏度下降了3~4个数量级.同时,凝胶渗透色谱(GPC)测试结果表明经过振荡剪切处理的PLA其分子量基本不变,表明熔体黏度的大幅下降是由PLA分子链有效解缠结导致而非分子链降解.示差扫描量热仪(DSC)结果表明,解缠效果最佳的PLA样品相比于未经处理的样品呈现出更低的玻璃化转变温度和较高的结晶度,进一步验证了熔体解缠的效果.不仅如此,我们研究了不同退火时间(1~30 min)和温度(180~200°C)对PLA分子链重新恢复缠结的影响,发现随着退火温度和时间的增加,PLA在120°C下等温结晶的半结晶时间不断增加,并向未经解缠处理的PLA样品的半结晶时间不断靠近,表明振荡剪切导致的解缠能在低温度下保持较长时间,在高温下快速复缠.  相似文献   

9.
木材短缺与优质竹制品需要对竹材预处理改善竹材性能,采用正交试验和对比试验研究三聚氰胺甲醛(MF)树脂对竹子力学性能及硅酸钠、聚磷酸铵对竹子阻燃性能的影响.不同的浸渍浓度、时间、温度对竹子力学性能的影响及两种阻燃溶液浓度、时间对竹子阻燃效果的影响.浸渍浓度和时间对竹子的力学性能有显著的影响而浸渍温度对竹子的抗压强度影响较小.低浓度的MF树脂溶液对渗透阻力小,最佳浓度不超过10%.最佳处理工艺是浓度不超过10%、温度80℃、时间2 h,此时抗压强度最大达到139.77 MPa.两种阻燃溶液随着浓度和时间的增加,浸渍量呈上升趋势.阻燃性能最佳处理方法为25%的硅酸钠溶液反复(两次)浸渍48 h时阻燃时间达到最长为207.73 s.  相似文献   

10.
以苯基三氯硅烷、3-氨基苯乙炔为原料,通过胺解反应合成了三(3-乙炔基苯胺)苯基硅烷(SZTA),并通过傅里叶变换红外光谱(FT-IR)和核磁共振氢谱(1 H-NMR)表征了其结构。随后通过熔融共混的方法制备了不同配比的改性含硅芳炔树脂(PSA/SZTA),借助黏度计、流变仪、差示扫描量热仪(DSC)、电子万能试验机、热重分析仪(TG)等考察了改性树脂的工艺性能、固化特性、弯曲性能、热稳定性能和热解动力学等。结果显示,引入SZTA后,改性PSA树脂的黏度降低62%;改性PSA树脂固化物的弯曲强度最高达到34.6MPa,比未改性的PSA树脂提高了约54%;且改性树脂固化物在N_2中的5%热失重温度(T_(d5))均高于500℃,保持了良好的耐热性能;PSA/SZTA-20固化物的热解表观活化能(Ea)的平均值为249kJ/mol。  相似文献   

11.
通过熔融纺丝及随后的热处理制备了具有不同初始结构的间规聚丙烯纤维(sPP).采用差示扫描量热仪(DSC)和变温广角X-射线衍射仪详细研究了sPP纤维在升温过程中的结构转变和熔融行为.结果表明,不同初始结构sPP纤维的晶型不同,卷绕纤维和退火处理纤维以Ⅰ型和Ⅱ型晶型为主,牵伸纤维介晶相占优;升高温度导致Ⅰ型和Ⅱ型两种晶型直接熔融,没有出现Ⅱ型向Ⅰ型的晶型转变;初始结构为介晶相的纤维在升温过程中部分介晶相直接转变为Ⅱ型晶型,还有一部分介晶相直接熔融,并在随后的升温过程中,形成Ⅰ型晶型.sPP纤维的多重熔融行为与其初始结构和纤维制备条件密切相关.  相似文献   

12.
由自制的二甲基取代类双酚4-(3,5-二甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮(DM-HPPZ)单体和4,4'-二氟二苯酮、4,4'-二氯二苯砜进行亲核缩聚反应,制备了一类新型的二甲基取代聚芳醚酮、聚芳醚砜及其共聚物聚芳醚砜酮树脂材料.在适宜的聚合条件下,获得了高分子量的聚合物,其特性粘度为0.44~0.75DL·g-1.利用DSC和TGA研究了聚合物的耐热性能,结果表明,新型聚芳醚玻璃化温度高(568~595K),耐热稳定性好(5%热失重温度大于416℃);拉伸强度为45.4~85.0MPa,力学性能优良.新型聚芳醚在氯仿、DMAc等极性有机溶剂中可溶解并浇铸得到透明、韧性高的薄膜.共聚物结合了聚醚酮好的力学性能和聚醚砜高的耐热性的特点,因此综合性能更佳.  相似文献   

13.
利用DSC方法研究了不同热历史条件对尼龙1212熔融行为的影响.不同的热历史条件下,在DSC曲线上,观察到尼龙1212产生2个或3个熔融峰,依据聚合物结晶理论,对各峰的来源进行了分析.在160℃下不同温度退火120 min的尼龙1212样品DSC曲线上,低温结晶熔融峰主要由低温结晶形成的一些微晶体或者片晶熔融产生,其晶体完善程度较差,熔融峰值较低,峰面积较小;主熔融峰是由样品在淬火过程中形成的晶体和升温过程中低温结晶形成的晶体的熔融重结晶形成较为完善的晶体熔融所产生,熔融峰值较高,峰面积较大.在不同的升温速率条件下,熔融峰温度有所移动,表明不同升温速率条件下产生的熔融峰的结晶晶型是相同的.在不同结晶时间下结晶,延长结晶时间对较高完善程度晶体的生长有利.在不同温度下依次退火处理的样品,熔融产生两个附加峰,这两个附加峰的峰温都比它们相应的退火温度高,而峰高和峰面积随退火温度降低而减小.根据等温结晶结果,由Hoffman方法确定了尼龙1212的平衡熔融温度为202.8℃.  相似文献   

14.
含亚甲基和双二氮杂萘酮结构的聚芳酮的合成与性能   总被引:1,自引:0,他引:1  
聚芳醚酮是一类重要的具有优异综合性能的工程塑料 ,它具有高的热稳定性、尺寸稳定性、耐溶剂性、好的加工性能和电性能 ,因而它经常作为复合材料的基质、粘合剂等被广泛的应用于航空、航天和电子等领域 .近几十年来 ,人们付出了很大的努力去开发聚芳醚酮新品种[1,2 ] .本研究组以 4 (4′ 羟基苯氧基 ) 2 ,3 二氮杂萘 1 (2H) 酮为缩聚单体制备了一系列的性能优良的聚芳醚酮[3~ 6] ,在主链中引入高密度的氮杂萘酮结构是获得高热稳定性和良好溶解性的重要途径 .由单体中含有更多的氮杂萘酮结构获得可溶解且耐温等级更高的聚芳酮是人们期…  相似文献   

15.
以β-二酮锆为唯一主催化剂, 以AlEt2Cl和MAO为助催化剂, 使之分别与主催化剂作用形成两种不同功能的催化活性中心, 考察乙烯原位共聚合成支化聚乙烯.  相似文献   

16.
通过加入第三单体4,4′-二(2-甲基苯氧基)二苯砜与1,4-二苯氧基苯(DPB)和对苯二甲酰氯(TPC)进行三元无规共聚,合成了一系列分子主链带砜基和主链芳环上含甲基侧基的聚(芳醚砜醚酮酮-co-醚醚酮酮)共聚物,并用FT-IR、DSC、WAXD和TG对其进行了表征.结果表明,共聚物的玻璃化转变温度随着第三单体摩尔含量的增加而逐渐升高,熔融温度则逐渐降低,当其摩尔含量为10%~30%时,共聚物具有优良的耐热性能及耐溶剂、耐酸碱性能.  相似文献   

17.
一系列新的席夫碱型液晶高分子冠醚的合成与表征   总被引:4,自引:0,他引:4  
以 4,4′ (α,ω 烷亚甲基二酰氧 )二苯甲醛和二氨基二苯并 1 5 冠 5为单体 ,采用溶液缩聚方法 ,合成了一类新的席夫碱型液晶高分子冠醚 .一种单体采用脂族二酰氯和对羟基苯甲醛反应制备 ,另一种新的单体采用二硝基二苯并 1 5 冠 5 ,在钯 碳催化剂存在下 ,水合肼还原制备 .合成的二硝基和二氨基 二苯并 1 5 冠 5 ,未能从IR和1 H NMR谱图上区分它们的几何异构体 .聚合物的分子量不高 ,Mn 在 1 0 1 0 0~ 1 3 0 0 0之间 .单体的结构通过元素分析、IR、1 H NMR和MS等方法确证 .聚合物的性质采用GPC、DSC、TG和POM等方法进行了研究 .发现所有的聚合物加热到各自的熔融温度 (Tm)以上都能形成液晶态 ,在液晶态可以观察到向列相的丝状织构和纹影织构 .聚合物的玻璃化转变温度 (Tg)、熔融温度和各向同性温度 (Ti)随聚合物分子中柔性间隔基的变化而变化 ,它们有较高的清亮点温度和宽的液晶态温度范围 .WAXD的研究进一步证实了聚合物的液晶性  相似文献   

18.
刚性聚芳醚腈合成与性能研究   总被引:1,自引:0,他引:1  
用2,6 二氟苯甲腈和间苯二酚为原料,在碱性条件下,于非质子极性溶剂中,通过溶液高温缩聚法制备聚芳醚腈[Poly(cyanoarylether)PCE].并用IR、DSC、TG、WAXD等手段对其结构及热性能、结晶行为进行了研究.结果表明,PCE高聚物不仅具备较好的耐高温和耐热老化性能,而且具有较好的结晶性能.同时,用对比的方法,对PCE的晶体结构进行了初步的探讨.  相似文献   

19.
以2-吡咯甲酰肼与2,4-二羟基苯甲醛和2-羟基-3-甲氧基苯甲醛经缩合反应合成2,4-二羟基苯甲醛-2-吡咯甲酰腙C12H11N3O3(Ⅰ)和2-羟基-3-甲氧基苯甲醛-2-吡咯甲酰腙C13H15N3O4(Ⅱ),并利用红外光谱、元素分析、1H NMR、X射线单晶衍射和热重分析进行表征,结果表明晶体Ⅰ属单斜晶系,空间群为P21/c,Z=4,晶胞参数为a=1.2586(4) nm,b=0.8050(3) nm,c=1.1914(4) nm;晶体Ⅱ为正交晶系,空间群为P212121,Z=4,晶胞参数为a=0.4756(2) nm,b=1.2491(6) nm,c=2.2145(11) nm。 热重结果显示,化合物Ⅰ和Ⅱ最大热分解峰分别出现在267.59和284.79 ℃,表观活化能分别为176.6和122.9 kJ/mol,表明化合物Ⅰ和Ⅱ具有较高的热稳定性。 利用粘度实验和微量热实验研究了化合物Ⅰ和Ⅱ与CT-DNA的相互作用,均显示两种化合物均与CT-DNA发生了插入作用,且相互作用过程放热,焓变值分别为ΔH(Ⅰ)=4.67 kJ/mol和ΔH(Ⅱ)=4.40 kJ/mol。  相似文献   

20.
采用一步法合成N-烯丙基吡啶氯盐离子液体([APy]Cl),考察其对纤维素的溶解性能.结果发现,在120℃下对棉浆粕(聚合度(DP)=556)的溶解度可高达19.71%,但再生后聚合度为223,热降解严重.通过添加不同种类共溶剂的方法克服此缺点.结果表明,有机溶液(DMSO,DMAc,DMF或吡啶)作为[APy]Cl的共溶剂时,[APy]Cl/DMAc复合溶剂对棉浆粕的溶解效果最佳,100℃下溶解度为15.03%,再生后聚合度为403.此外降低了溶剂成本.但70℃下,溶解度仅为1.36%,溶解能力较弱.继续探讨了[AMIM]Cl作为[APy]Cl的共溶剂时对纤维素的溶解性能,结果表明,70℃下,[APy]Cl/[AMIM]Cl复合溶剂对棉浆粕的溶解度为8.78%,再生后聚合度为516.可知添加上述2种共溶剂均使[APy]Cl在低于自身熔点下形成液体并能够溶解一定量纤维素,拓宽了溶解温度区间及应用平台.对FTIR,XRD和TGA谱图分析,结果表明上述为纤维素的直接溶剂,可将其晶型由Ⅰ型转变成Ⅱ型,再生后热稳定性稍有降低.通过照片和SEM表明再生膜无色透明,结构致密.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号