首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 281 毫秒
1.
在固定床装置上进行了三种煤的热解实验,考察了热解温度、热解时间等因素对煤氮迁移转化的影响。热解实验表明,A煤1 073 K热解产生HCN,在热解前3 min释放完毕,早于NH3释放,且当NH3开始逸出后HCN生成量急剧减少;三种煤热解HCN、NH3的累积释放量在不同时刻达到各自最大值后急剧下降;半焦氮随热解温度的升高而增加。在973~1 123 K三种煤热解有50%~60%煤氮转化为焦氮,40%~50%煤氮随挥发分一起释放,挥发分氮有20%~50%的氮物种以NH3和HCN的形式存在,其中,HCN占气相氮的50%~60%、NH3占40%~50%。  相似文献   

2.
在石英管流化床反应器中对胜利褐煤进行快速热解实验,考察了773~1 173 K下酸洗脱矿对胜利褐煤热解过程中N迁移转化规律的影响。通过比较原煤和酸洗后煤中N的不同逸出规律可以得出,影响酸洗前后胜利褐煤热解过程中N迁移转化规律的主要是碱金属Na及碱土金属Ca;热解过程中,煤中的Na和Ca促使煤中的N向NH3转化并有效抑制了HCN的生成,金属离子的存在对催化焦油N转化为NH3的作用较为明显;原煤中的碱金属和碱土金属的赋存使半焦裂解反应加剧,降低了固体半焦的产率,半焦N的产率也随之减少;与原煤相比,酸洗煤热解半焦中的吡啶型N(N-6)含量较多,而吡咯型N(N-5)和季N(N-Q)相对较少。  相似文献   

3.
利用热重分析-傅里叶红外光谱联用(TG-FTIR)和水平管式炉-X射线光电子能谱(XPS)研究了两种富氮生物质原料(大豆秸秆(SBS)和纤维板(FB))热解过程中NO_x前驱物(NH_3、HCN和HNCO)的释放特性,考察温度、升温速率及燃料含N物质结构对其NO_x前驱物释放行为的影响。结果表明,燃料中的N来源不同(天然固有与人工添加)造成其转化差异:SBS释放的NO_x前驱物主要为NH_3而FB为NH_3、HCN(快速)和HNCO(慢速);FB气相N主要随挥发分析出,而SBS则相反,在二次反应阶段析出;两种燃料中N的转化随温度变化,低温下富集于半焦N,600℃以上时更多向非半焦N转移,NO_x前驱物以NH_3为主,高温及高升温速率利于HCN生成,若以减排NO_x为目的,热解温度控制在600℃为佳;两种燃料中N的结构均为胺类N(N-A),热解时部分N-A向半焦中杂环N转化,同时伴随杂环N分解;高温下吡啶N和吡咯N分解分别主要产生HCN和NH_3。  相似文献   

4.
将卟唑在650℃,12MPa焦化条件下所得产物作为含氮模型化合物,在固定床反应器中研究了该模型化合物热解及燃烧过程中氮的逸出行为。结果表明,热解温度低于900℃时燃料氮主要停留在半焦中,HCN和NH3只占很小的部分;催化热解使HCN的量相对减少,NH3相对增加;半焦的反应性和燃烧条件影响半焦氮氧化生成NO,半焦的反应性越高,半焦氮对于NO的转化率越低;低温下催化剂使半焦氮对于NO的转化率升高,而高温下则相反。催化剂对于半焦燃烧时NO排放的影响还与半焦的性质有关,同一催化剂在相同的燃烧条件下对不同半焦燃烧的NO释放有不同的影响,预示半焦的性质和催化剂之间也有一定的匹配性。  相似文献   

5.
煤燃烧过程生成氮氧化物前驱体的研究   总被引:5,自引:1,他引:5  
对煤中氮在燃烧条件下生成NOx前驱体(HCN、NH3)进行了研究。实验采用石英玻璃管流化床反应系统,测定了神木煤、澳大利亚烟煤、澳大利亚褐煤在400 ℃~900 ℃HCN、NH3的生成,用离子色谱测定了HCN、NH3的生成量,用差热分析测定了三种煤的燃烧峰温及起始燃烧温度。实验结果表明,在燃烧条件下煤中氮转化为HCN、NH3的比例很高,这一释出过程伴随着煤燃烧过程而发生; 在400 ℃~500 ℃燃烧时HCN、NH3的生成量占煤中总氮质量分数的50%~70%,无论是煤挥发分还是半焦中的氮都在此条件下转化生成了HCN、NH3, 这一实验规律与热解条件的实验结果不同。煤样在更高的温度下燃烧(>700 ℃)时,气体产物中的HCN、NH3的质量分数很少,这是HCN、NH3进一步氧化生成了NOx的缘故。  相似文献   

6.
煤气化过程中生成氮化物的研究   总被引:12,自引:5,他引:12  
对煤中N在气化条件下的转化进行了研究,详细考察了在CO2和水蒸气气氛中转化生成HCN和NH3的过程,并对热解和气化条件下煤中N转化规律的差别进行了讨论。实验结果表明:在气化条件下煤中N转化为HCN和NH3的量随温度的升高而增大,在水蒸气气氛下HCN和NH3的生成量明显大于热解条件的实验结果。在本实验条件下半焦中N含量的15%-20%可以转化为NH3,水蒸汽气氛条件下NH3生成量的提高主要来源于半焦的气化反应过程。  相似文献   

7.
煤热解过程中生成氮化物的研究   总被引:21,自引:8,他引:21  
使用管式反应器在600℃-900℃范围内考察了温度和煤种等对煤中氮热解转化成HCN和NH3的影响。实验结果表明:热解的温度越高,气相产物中的HCN和NH3的生成量越大;煤化程度越高,煤中氮转化为HCN的量越少;惰质组含量较高的煤样,热解生成的NH3较多。在这些实验的基础上,对煤种和惰质组含量对氮氧化物前驱体生成的影响进行了初步的探讨。  相似文献   

8.
升温速率对胜利褐煤热解过程中N迁移转化的影响   总被引:1,自引:0,他引:1  
在固定床/流化床管式石英反应器中进行了胜利褐煤的快速热解和慢速热解实验,考察了升温速率对N迁移转化及对半焦内部N化学形态变化的影响。研究结果表明,快速升温热解气相N(NH3和HCN)生成量明显高于慢速热解时的生成量,且随着温度的升高,两者差值均逐渐增大。在多数情况下,NH3或HCN的产率在973 K左右并不随温度的升高而增加,这与高温下的半焦热缩聚反应以及挥发分的二次反应有关。快速热解条件下,半焦N的释放速率要快于半焦炭本身失重速率。X射线光电子能谱(XPS)分析认为,热解使得吡咯型N(N-5)部分转化为吡啶型N(N-6)和季氮型N(N-Q),快速热解有利于生成N-6,而慢速热解下半焦中N-Q含量较高。  相似文献   

9.
升温速率对氨基酸裂解生成含氮气体的影响研究   总被引:1,自引:0,他引:1  
为进一步阐明卷烟烟气中含氮有害气体的形成机理,以甘氨酸、天冬酰胺和天冬氨酸为研究对象,采用TG-FTIR技术对其在不同升温速率下热解时含氮气体的释放特性进行了研究。结果表明:(1)随着升温速率增加,三种氨基酸TG和DTG曲线各个失重阶段的起始和终止温度向高温侧移动;(2)氨基酸结构不同,HCN、NH3、HNCO的生成温度及生成量不同;(3)增加升温速率,三种氨基酸热解过程中HCN、NH3、HNCO的生成量均增加,但三种氨基酸氮转化的选择性不尽相同。甘氨酸和天冬酰胺热解过程中氮主要转化为NH3,而天冬氨酸在低升温速率下热解时,氮主要转化为HCN和NH3,在高升温速率下主要生成HNCO。  相似文献   

10.
选择3种典型煤种为研究对象,通过脱灰和添加含Fe、Ca、Na等金属盐,研究煤热解过程中金属离子对含氮气相产物析出特性的影响以及与煤种和温度的交互关联。结果表明,脱灰煤HCN和NH3的产率均比原煤样下降,而随温度的升高HCN的产率逐渐增大,NH3的产率则先增加后减小,在800℃有最大值。金属离子对不同变质程度煤的含氮气相产物析出的催化作用不同;Fe和Na抑制中等变质程度煤HCN的析出,而对低变质程度煤起促进作用,Ca则对HCN的析出均有一定的促进作用。而对于NH3的形成,3种离子均对中等变质程度煤有抑制作用,而对低变质程度的煤则有促进作用。不同金属离子对HCN和NH3析出的催化作用均有一定的范围。煤热解时含氮气相产物的析出是煤中固有多种金属离子共同作用的结果。  相似文献   

11.
生物质热解过程中NO、NH3和HCN的释放特性   总被引:2,自引:0,他引:2  
在氩气气氛下,利用固定床反应器对稻草(DC)、麦杆(MG)和锯末(JM)三种生物质进行热解实验,采用傅里叶变换红外光谱仪(FT-IR)在线检测热解气体产物中的含氮组分,分析各种气相含氮组分的释放规律。实验结果表明,由于锯末中木质素含量较高,锯末热解开始快速释放NO、NH3和HCN的温度明显高于稻草和麦杆。稻草热解过程中生成的NH3、HCN和NO量最大。低温下NH3的生成至少部分与生物质中氨基结构的分解有关,HCN的生成温度较高。不同生物质热解过程中NO、NH3和HCN释放特性的差异,是由生物质大分子结构不同、灰分含量及成分不同、N含量不同等决定的,以及氮在生物焦、焦油和气相间的分配差异造成的。  相似文献   

12.
秸秆含氮模型化合物热解氮转化规律的实验研究   总被引:1,自引:0,他引:1  
采用TG-FTIR联用实验系统,在氩气氛围下研究了含氮模型化合物甘氨酸酐热解失重特性以及NOx前驱物的释放特性;研究了K、Ca、Fe金属盐对甘氨酸酐热解氮转化的影响。结果表明,在20、40、60℃/min升温速率下,NH3、HCN、HNCO为甘氨酸酐热解的主要气相含氮产物,其中,NH3产率最大,HCN次之,HNCO生成量最小;随升温速率增加,TG失重曲线右移,热解剩余物减少;且HCN和HNCO的产率增加,NH3产率降低;K、Ca、Fe盐均对甘氨酸酐热解氮转化具有催化作用,其中,K、Ca有利于促进NH3、HCN的生成,Fe对HCN的生成具有促进作用,但对NH3的生成起到抑制作用。  相似文献   

13.
以城市污泥(SS)、中药药渣(HTW)和硅藻(DT)为对象,在水平管式反应器上对比研究了水热处理前后样品在热解过程中NO_x前驱物的生成特征,并结合热重(TGA)和X射线光电子能谱(XPS)表征分析了该耦合过程对NO_x前驱物的影响机制。结果表明,在240℃下进行水热预处理能直接或间接地影响样品燃料N在不同热解阶段时的转化路径,从而在整体层面上降低NO_x前驱物的释放量,例如当热解温度为900℃时,源于水热焦燃料N的NO_x前驱物为55.0%(SS_(240))、48.1%(HTW_(240))和51.2%(DT_(240)),比未经处理样品的NO_x前驱物释放量分别少9.5%(SS)、6.0%(HTW)和15.4%(DT),但若以原料燃料N为基准,源于水热焦的NO_x前驱物则比未经处理样品的NO_x前驱物释放量分别少90.1%(SS)、41.9%(HTW)和59.8%(DT),并且对NH_3的抑制效果高于HCN。进一步根据热失重曲线及其半焦N官能团的演变规律可以推测,水热预处理对NO_x前驱物的两条影响机制,即含N官能团的脱除(对于初次反应的NH_3释放)与含N官能团的稳定化(对于二次反应的HCN释放),可为废弃物的清洁利用提供理论参考。  相似文献   

14.
在理想平推流反应器中进行了模拟热解气对模拟烟气中NO、N2O的还原实验研究,考察了反应温度、过剩空气系数,模拟热解气中CH4、CO、H2、NH3入口浓度与模拟烟气中NO、N2O入口浓度对NO、N2O与总氮转化率的影响。结果表明,向NH3添加可燃气体CO、H2、CH4可使NO还原窗口向低温方向移动150~200 K,该温度窗口为1 073~1 223 K;但NH3-CO-H2-CH4-O2体系对NO、N2O的还原分解作用依赖于体系的O2浓度,仅在富燃料情形(过剩空气系数λ为0.6)下可分别达60.6%、100%的NO、N2O脱除率;在反应温度1 073~1 223 K及过剩空气系数λ为0.6条件下,较高的热解气CH4、CO、H2浓度可增加NO排放,但有利于还原N2O;增加NH3入口浓度可增加NO分解率。  相似文献   

15.
煤岩有机显微组分热解过程中HCN和NH3生成规律的研究   总被引:1,自引:0,他引:1  
经等密度梯度离心分离,从褐煤、长焰煤、气煤和贫煤四种不同变质程度煤中获得了高纯度的有机显微组分。用石英管式反应器在600 ℃~900 ℃考察了煤岩有机显微组分热解过程中HCN和NH3的生成规律。实验结果表明,在显微组分热解过程中HCN主要是挥发分二次裂解的产物。在镜质组热解过程中,煤的变质程度越高,HCN的生成率越低,热解温度越高,HCN的生成率越高;同一种煤三种有机显微组分热解过程中,HCN的生成不仅与显微组分挥发分的质量分数有关,而且与显微组分中氮的存在形态有关,在较低温度热解时吡咯型氮质量分数高的煤样HCN的生成率较高。显微组分热解过程中NH3来自于挥发分的二次热裂解,与焦的热裂解有关,随煤变质程度增高,镜质组热解过程中NH3的收率降低;对同一种煤三种煤岩有机显微组分,由于其黏结性不同,含氮官能团和氢自由基的接触几率不同,生成NH3的能力也不同,惰质组的NH3生成率最高,壳质组最低;温度对NH3的生成也有影响,800 ℃NH3的生成率最高,惰质组NH3的生成率为11.8%,壳质组NH3的生成率为5.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号