首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
五十年代以来,出现了一门处在基本粒子物理和化学的边缘科学,叫做新原子化学。所谓新原子,就是原子中的质子被其他带正电荷的粒子所取代,或者原子中的一个电子被其他荷负电粒子所取代,这样就形成新原子。例如,H原子中的质子被e~ 取代,就成(c~ e~-),叫正电子素(Positroniutn);若被μ~ 所取代,就成μ介子素(μ~ e~-)。又如,H原子的电子被μ~-所  相似文献   

2.
随着“基本”粒子物理学的发展,“基本”粒子化学的研究也日益受到了人们的重视。奇异原子化学就是随之兴起的一个新课题。它是“基本”粒子物理和化学相互渗透的边缘学科。本文拟就奇异原子和它与化学的联系,做简要的介绍。为了便于化学工作者了解,首先简单介绍几种本文涉及到的“基本”粒子。  相似文献   

3.
通过两步还原法制备了Pd/Ni双金属催化剂.由于金属Pd原子在先行还原的Ni纳米粒子表面的外延生长以及其在Ni表面及Pd表面生长表现出的吉布斯自由能差异,最终导致了异结构Pd/Ni纳米粒子的形成.高分辨电子透射显微镜结果证实了异结构的存在,然而X射线衍射测量表明Pd/Ni纳米粒子具有类似于Pd的面心立方结构.制备的Pd/Ni纳米粒子与同等条件下合成的Pd纳米粒子相比对甲酸氧化呈现了更高的电催化活性,而且电催化稳定性也要明显优于纯Pd纳米粒子,证明Pd/Ni双金属催化剂是可选的直接甲酸燃料电池阳极催化剂.双金属催化剂对甲酸氧化电催化活性和稳定性增强可能是Ni原子的修饰改变了Pd粒子表面配位不饱和原子的电子结构所致.  相似文献   

4.
凌永乐 《化学教育》1996,17(5):45-48
分子构造(constitution)是指分子中原子相互联结的方式和次序,过去长期以来称为分子结构((structure),根据国际纯粹和应用化学联合会的建议,改为“构造”。“结构”一词应用在广泛的范围,例如物质结构、原子的电子结构等等。  相似文献   

5.
张桂玲  戴柏青 《化学通报》2000,63(10):46-49
SO2,SO3和H2SO4这样的分子,由于其中S原子的"超价”(supervalent)而被称为"超价分子”.对于它们的成键特性,除早期价键理论的共振论观点外,一般都采用简单分子轨道理论观点加以解释,认为在SO2和SO3分子中,诸原子在同一平面上,S原子sp2杂化,与O原子形成σ键,S的另一个p轨道与分子平面垂直,其余O原子也各有一个与分子平面垂直的p轨道,这些p轨道线性组合形成离域π轨道.SO2中的离域π键是Π43,SO3中则是Π64.之后对S原子d轨道是否参与成键的研究表明,S的dπ轨道可以与O的pπ轨道形成π键,认为S原子d轨道参与了π键的形成[1,2].本文通过分子轨道理论的自洽场法从头算和价键理论的广义价键法(Generalized Valence Bond,GVB)计算,根据计算结果对SO2和SO3的成键性做进一步的讨论.......  相似文献   

6.
近年来发展了多种新的合成氚(H~3)标記化合物的方法。但其中最有发展前途的是“热合成法”。这种方法的原理是:当一个原子核俘获中子后,立卽发射出不同的粒子(n,α,β,p等),使这个原子核受到一种反冲作用力,卽产生“反冲”,受反冲的原子称为反冲原子,或称它为“热原子”。理論計算表明,反冲原子所具有的反冲能量,一般至少为几百电子伏特,而原子在分子中的结合能只不过3—5电子伏特左右,因此,反冲能量足以使分子中化学键断裂。在反冲原子经过的路程中,使周围介质中的分子、原子电离、激发或分解,从而引起化学反应,形成示  相似文献   

7.
朱德忠 《化学教育》1991,12(2):32-33
在现行高中化学课本中,有关极性键和非极性键的概念是这样阐述的:“在单质分子中,同种原子形成的共价键,两个原子吸引电子的能力相同,共用电子对不偏向任何一个原子,这两个电子在键的中央出现的机会最多,成键的原子都不显电性。这样的共价键叫做非极性共价键,简称非极性键。”“在化合物的分子中,不同种原子形成的共价键,由于不同原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力强的原子一方,也就是说,靠近吸引电子能力强的原子一方电子云比较密集。因而吸引电子能力强的原子就带部分负电荷,吸引电子能力较弱的原子就带部分正电荷,这样的共价键叫极性共价键,简称极性键”。  相似文献   

8.
在多电子原子中,将原子的状态与电子的状态相联系的方法通常有两种,一种是将原子的总轨道角动量L和总自旋角动量S偶合得到原子的总角动量J,这种偶合方式称为L-S偶合;另一种是将每个电子的轨道角动量与自旋角动量偶合先得到每个电子的总角动量j,然后再将各电子的总角动量偶合得到原子的总角动量J,这种偶合方式称为j-j偶合。实际上,L-S偶合或j-j偶合都是一种近似方法,而且是两种极端  相似文献   

9.
采用基于密度泛函理论(DFT)的平面波赝势法模拟了O2和CN分子在铜活化闪锌矿(110)表面的吸附. 结果表明: 铜活化后闪锌矿表面的铜原子3d轨道处于费米能级附近, 增强了闪锌矿表面的活性. 未活化闪锌矿表面不能吸附O2, 活化后闪锌矿表面的铜原子和硫原子提供电子填入氧的反键π2p*轨道从而形成吸附键. CN分子吸附模拟表明, 铜活化增强了CN分子与闪锌矿表面的吸附作用. Cu原子d轨道与C原子反键p轨道作用形成反馈π键, 同时C原子s轨道与Cu原子sp轨道作用形成共价键; CN分子中N原子与闪锌矿表面S原子发生相互作用.  相似文献   

10.
欧阳润海  李微雪 《催化学报》2013,34(10):1820-1825
采用密度泛函理论研究了CO气氛对FeO(111)/Ru(0001)负载Au原子吸附位、电荷及其稳定性的影响. 首先考察了FeO(111)单层薄膜在Ru(0001)表面上的界面结构. 研究发现,表面莫尔超晶胞内的HCP区域有最小的Fe-O层间距(rumpling),且Fe和O原子均与衬底Ru形成化学键. Au原子在FeO/Ru(0001)上最稳定的吸附在HCP区域的Fe-bridge位. 其中,Au原子诱导两个Fe原子从O原子层的下面翻转到其上面,形成两个Au-Fe键,且Au带负电. 当把体系暴露在CO气氛下后,CO能诱导Au原子从原来最稳定的Fe-bridge位转移到其邻近的O-top位,伴随着Au的电荷从负变到正,形成非常稳定的Au+-CO羰基物. 结果表明,反应气氛对负载金属催化剂的化学状态及其稳定性的影响很大; 同时也强调了反应条件下催化剂原位表征的重要性.  相似文献   

11.
采用原子叠加和电子离域分子轨道处理(ASEO-MO)对碱金属原子在C~60分子内外所形成的MC~60进行了较详细的考察, 讨论了它们的几何结构规律和电子结构等性质。在MC~60(M=Li, Na, K, Rb, Cs)中Li原子的平衡位置将偏离C~60分子的中心, 而Na和K的平衡位置是在C~60分子的中心, 但Rb和Cs原子则在C~60分子外部将比在其内部稳定。由金属原子半径和C~60球半径的讨论, 从而预见哪些原子可以在C~60分子内部附加形成稳定的化合物。  相似文献   

12.
“若二个原子各有一个未成对电子,且自旋反平行,则在二个原子接近时这二个未成对电子可以配对,使得能量降低,从而形成化学键。”长期以来,很多化学教科书这样阐述,以致使很多学化学的同学形成了这样的“基本概念“,即“电子配对,能使能量降低,从而形成化学键。”  相似文献   

13.
一、Szilard-Chalmers效应基本原理大家知道,凡有一作用力,必有一大小相等方向相反的反作用力,这就是著名的牛顿第三定律。这种作用也存在于原子核反应中,例如,在核转变时,原子核放出不同的粒子(γ-,α-或β-粒子等),使这个原子核受到一反作用,因而产生“反冲”,受反冲的原子称为反冲原子。理论计算表明,反冲原子所具有的反冲能量,一般至少为几百电子伏特,而原子在分子中的结合  相似文献   

14.
在CCSD(T)/6-311+G(2d,2p)//B3LYP/6-311+G(2d,2p)水平上对八种(H)FNO+异构体的结构和异构化机理进行了研究.用分子生成密度差结合电子密度拓扑分析方法讨论了FNO质子化过程中的电子转移,结果显示FNO质子化过程中除HFNO+中电荷由N,O原子向H,F原子转移外,其他七种异构体中均是H原子上电荷增加,F原子上电荷减小,说明电子由F向H转移.在八种(H)FNO+异构体中,HFNO+,FNOH-cis,FN(H)O+和FNOH+-trans能量较低,较稳定;异构体间通过H原子迁移、F原子迁移、分子内化学键转动及化学键的相对振动四种过程实现异构化,其中原子迁移过程的反应能垒很高,反应不容易进行.用电子定域函数(ELF)理论讨论了反应过程中化学键的变化.  相似文献   

15.
基于密度泛函理论的第一性原理方法,通过计算表面能确定La Fe O_3(010)表面为最稳定的吸附表面,研究了H_2分子在La Fe O_3(010)表面的吸附性质。La Fe O_3(010)表面存在La O和Fe O_2两种终止表面,但吸附主要发生在Fe O_2终止表面,由于La Fe O_3(010)表面弛豫的影响,使得凹凸不平的表面层增加了表面原子与H原子的接触面积,表面晶胞的纵向体积增加约2.5%,有利于H原子向晶体内扩散。研究发现,H_2分子在La Fe O_3(010)表面主要存在3种化学吸附方式:第一种吸附发生在O-O桥位,2个H原子分别吸附在2个O原子上,形成2个-OH基,这是最佳吸附位置,此时H原子与表面O原子的作用主要是H1s与O_2p轨道杂化作用的结果,H-O之间为典型的共价键。H_2分子的解离能垒为1.542 e V,说明表面需要一定的热条件,H_2分子才会发生解离吸附;第二种吸附发生在Fe-O桥位,1个H原子吸附在O原子上形成1个-OH基,另一个H原子吸附在Fe原子上形成金属键;第三种吸附发生在O顶位,2个H原子吸附在同一个O原子上,形成H_2O分子,此时H_2O分子与表面形成物理吸附,H_2O分子逃离表面后容易形成氧空位。此外,H_2分子在La Fe O_3(010)表面还可以发生物理吸附。  相似文献   

16.
使用密度泛函理论中的广义梯度近似对内掺Sc原子的graphene-Sc-graphene扩展三明治结构的几何结构、电子结构和储氢性能进行计算研究. 计算发现: Sc原子位于单层石墨烯中六元环上方的结构具有较大的结合能, 但小于固体Sc的内聚能实验值(3.90 eV), 然而, 当单个Sc原子或者多个Sc原子在双层石墨烯中间与底层相距2 Å时, Sc原子与基底的结合能增加到5 eV以上, 远远大于固体Sc的内聚能实验值(3.90 eV), 因此相邻的Sc原子可以有效避免成簇. 由此可见, 三明治结构的形成明显增加了Sc原子与基底的结合强度, 该结构可以进一步储氢来满足18电子规则而更加稳定, 从而成为理想的新型储氢纳米材料. 扩展三明治结构graphene-Sc-graphene的(2×3)单元中每个Sc原子最多可以吸附2个H2分子, 对H2的平均吸附能分别为0.67 eV和0.54 eV, 介于物理吸附和化学吸附(0.1~0.8 eV)之间, 因此该体系可以实现常温常压下对H2的可逆吸附. 由储氢机制分析可知: 扩展三明治结构graphene-Sc-graphene主要通过Dewar-Kubas作用进行储氢, 形成了π-δ-π型的电子结构.  相似文献   

17.
通常人们把粒径1~100 nm之间的金属、半导体、氧化物及各种化合物的粒子或者粒子的集合体称为纳米粒子。近年来的纳米粒子化学和物理的迅速发展已经证实:随着原子或分子簇尺寸的减小,表面原子的比例逐渐增大,粒子表现了与块状材料不同的特性,其粒子显示出以“量子尺寸效应”为主的特点,特性表现出种种异常[1,2]。  相似文献   

18.
采用基于密度泛函理论的第一性原理计算方法,计算了锂离子电池LiMnPO4正极材料的电子结构。计算结果表明:当Li+嵌入体系后,O和P的原子布居变化较小,电子向金属原子的转移明显得到加强。Li+和O2-有弱相互作用,当Li+离子脱出以后,氧原子所得到的电子数减小,导致布居减小。锂是以离子形式存在的于LiMnPO4正极材料中。在LiMnPO4和MnPO4体系中,Mn原子具有磁性,其磁矩分别为4.78μB和3.84μB,其余原子磁性近似为0。氧为负离子,带负电荷,而P和Mn则为正离子。O2p与P3s、P3p轨道发生有效重叠,并形成共价键,Mn3d和O2p之间能够有效地发生重叠并形成共价键。在放电过程中有电子从外电路进入正极,大部分电子所带电荷分布在Mn原子上。  相似文献   

19.
研究碳原子在TiO2(101)负载镍或铂原子上的吸附行为对于阐明积碳问题提供了一个热力学线索.广义梯度近似密度泛函理论的PBE计算结果表明,镍在TiO2表面最稳定构型的吸附能为347.16 kJ/mol,铂对应的最稳定构型的吸附能为315.9 kJ/mol,而且2种金属的最稳定构型均处于TiO2表面2个O2c原子之间的桥位.吸附金属原子后,TiO2的态密度图中各电子峰向低能量方向移动,体系趋于稳定.从态密度图可知,碳的p轨道与金属原子的d轨道发生叠加,说明碳原子与金属原子成键,从而使吸附后Ni或Pt与O原子之间的相互作用减弱.碳原子吸附在Ni/TiO2(101)和Pt/TiO2(101)表面的最佳吸附结构的吸附能分别为474.19和570.08 kJ/mol,说明TiO2负载铂催化剂在甲烷重整反应中抗积碳能力较强.  相似文献   

20.
采用密度泛函理论(DFT)中广义梯度近似(GGA)方法,对Pt原子与y-Al2O3(001)面的相互作用及迁移性能进行了研究.分析了各种可能吸附位及吸附构型的松弛和变形现象,吸附能和迁移能垒的计算结果表明:Pt团簇能够稳定吸附在该表面.Pt原子在表面O位的吸附能明显较高,这主要是由Pt向基底O原子转移了电子所致.电荷布居分析表明,Pt原子显电正性,Pt和Al原子之间存在排斥作用,导致与Al原子产生较弱相互作用.计算的平均吸附能大小依赖于Pt团簇的大小和形状,总体趋势是随着Pt原子数增多,吸附能降低.Pt原子在y-Al2O3(001)表面迁移过程所需克服的迁移能垒最高值为0.51 eV.随着吸附的Pt原子数增多,更倾向于形成Pt团簇.因此,Pt原子在y-Al2O,(001)表面的吸附演变不可能形成光滑、均匀平铺的吸附构型,而在一定条件下容易出现团聚.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号