首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
锂离子电池镍掺杂尖晶石LiMn2O4正极材料的电子结构   总被引:2,自引:0,他引:2  
采用密度泛甬平面波赝势方法对LiMn2O4和LiNi0.5Mn1.5O4的几何结构进行了优化,并计算了相应的电子结构.计算的结果表明:在Li 脱嵌前后,LiMn2O4和LiNi0.5Mn1.5O4均为导体,且锂元素主要以离子形式存在于两种材料中,O2p轨道与Mn(Ni)的3d轨道形成了较强的共价键.Li 嵌入导致Mn(Ni)3d轨道的态密度峰发生移动.Ni的掺杂导致Mn(Ni)和O2p轨道的成键作用得以加强,电子在Mn(Ni)3d轨道的填充发生变化,从而提高了电池的充放电电压.  相似文献   

2.
本文使用(NH4)2Ce(NO3)6氧化Mn2+法合成了1个结构新颖的Mn-Ce混合金属簇合物[Mn3Ce2(O)5(O2CPh)9(CH3OH)3]·2CH3CN(1.2CH3CN,HO2CPh代表苯甲酸),并对其进行元素分析、红外光谱、单晶X-射线结构分析、磁性等表征。结构分析表明,化合物1.2CH3CN属于三斜晶系P1空间群,结构中2个Mn4+离子、2个Ce4+离子和4个桥连μ3-O原子组成1个不规则的立方烷,然后通过另1个桥连μ3-O原子与另1个Mn3+离子相连。晶胞内分子间没有氢键作用,但存在较强的π-π堆积作用。磁性研究表明,簇合物内Mn离子之间存在铁磁性耦合作用,基态自旋值S=5和磁各向异性参数D=-0.31 cm-1,交流磁化率没有频率依赖现象。  相似文献   

3.
尖晶石型LiMn2O4晶体结构及锂离子筛H+/Li+交换性质研究   总被引:1,自引:0,他引:1  
采用密度泛函理论平面波超软赝势和广义梯度近似法对尖晶石型LiMn2O4及其锂离子筛HMn2O4的晶体结构和性质进行了从头计算。PW91泛函最为有效,Li+被H+取代后HMn2O4晶胞收缩,点阵常数从LiMn2O4的0.823 nm减小至0.799 nm,其XRD峰也相应向高角度方向明显位移。经同种格点原子的XRD分析表明,Mn、O两元素对XRD方式和强度起着决定作用。其中Li呈+1价完全离子化,可被H+彻底交换,H与周围O在等电子密度图中呈现电子云相互连接,只带有0.42个正电荷。价轨道分态密度表明,Mn-O之间强的共价键合主要归因于Mn-d和O-p在费米能级下-7.3~-1.6 eV间的轨道重叠,形成了有利于H+/Li+交换的骨架空穴隧道。阵点和空穴多面体的体积遵守如下顺序:V8a>V48f>V8b、V16c>V16d、V16c>V48f。Li+最易迁移至邻近的16c位置,碱金属离子的交换受到离子半径和作用能大小的限制。  相似文献   

4.
向Mn(O2CCH3)2·4H2O、吡唑和醋酸的乙腈/甲醇溶液中加入(NH4)2Ce(NO3)6得到1个四吡唑取代的[Mn8Ce]混金属簇合物[Mn8O8Ce(O2CCH3)12(pyr)4]·2CH3OH(2·2CH3OH,pyr为吡唑配体),并对其进行单晶结构分析、红外、元素分析和磁性研究。单晶结构研究表明,该化合物属于单斜晶系,P21/c空间群,8个Mn原子形成1个不在同一平面的八元环,然后通过8个μ3-O2-与位于环中心的1个CeⅣ连接起来。磁性研究表明,化合物中Mn3+离子之间是弱的铁磁性作用,基态自旋值S=6,交流磁化率虚部仅显示较微弱的频率依赖现象。通过研究系列[Mn8Ce]簇合物的磁构关系发现,配合物中随着含孤立μ3-O2-的∠MnOMn键角的增大和随着含桥连羧基O的∠MnOMn键角的减小,Mn3+间的铁磁性耦合增强,并进而导致化合物基态自旋值S的增大。  相似文献   

5.
基于第一性原理,优化了含Cr的高温相尖晶石结构材料(CrxFe1-x)A(CryFe2-y)BO4 的几何结构,并对它们的磁电性能进行了计算.基十配位场理论分析了 CrFe2O4) 的电子结构及其具有半金属性的微观机制.计算表明,仅当x=1.0、y=0.0 时,(CrxFe1-x)A (CrvFe2-y)BO4具有半金属性.CrFe2O4 是典型的亚铁磁性耦合的IIB 监理工程型半金属,其分子磁矩约为5.6μB,大于Fe3O4 的4.0μB.在CrFe2O4 的四面体晶体场中,中心离子的电子结构可近似写为Cr+t12gt32g↓; 八面体晶体场中,中心离子的电子结构可近似写为 Fe2+t32g↓e2e↓t12g↓.CrFe2O4具有半金属性的原因是在配合物 ML4和 ML6 中,中心离子与周围 O 配体间存在强烈的共价键作用,该作用使中心离子与 O 配体间形成杂化轨道,导致自旋向上子带被撕裂,进一步使费米面止好处于自旋向上子带带隙中.  相似文献   

6.
基于第一性原理, 优化了含Cr的高温相尖晶石结构材料(CrxFe1-x)A(CryFe2-y)BO4的几何结构, 并对它们的磁电性能进行了计算. 基于配位场理论分析了CrFe2O4的电子结构及其具有半金属性的微观机制. 计算表明, 仅当x=1.0、y=0.0时, (CrxFe1-x)A(CryFe2-y)BO4具有半金属性. CrFe2O4是典型的亚铁磁性耦合的IIB型半金属, 其分子磁矩约为5.6 μB, 大于Fe3O4的4.0 μB. 在CrFe2O4的四面体晶体场中, 中心离子的电子结构可近似写为Cr+t12g↑t32g↓; 八面体晶体场中, 中心离子的电子结构可近似写为Fe2+t32g↑e2g↑t12g↓. CrFe2O4具有半金属性的原因是在配合物ML4和ML6中, 中心离子与周围O配体间存在强烈的共价键作用, 该作用使中心离子与O配体间形成杂化轨道, 导致自旋向上子带被撕裂, 进一步使费米面正好处于自旋向上子带带隙中.  相似文献   

7.
朱立才  袁中直  李伟善 《电化学》2004,10(2):168-174
应用现场紫外 可见吸收光谱研究碱性溶液中电解MnO2(EMD)放电机理.结果表明,对EMD电极的放电还原,包括两个单电子过程,其第1电子还原又分为3步:①还原MnO2颗粒表面和阳离子空位附近的Mn4+离子,②还原斜方锰矿中的Mn4+离子,③还原软锰矿中的Mn4+离子.第2电子还原是将溶解的Mn3+还原成Mn2+,进一步转化成Mn(OH)2和Mn3O4.  相似文献   

8.
六角多铁性HoMnO3的电子和能带结构   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT)结合投影缀加平面波(PAW)方法, 运用广义梯度近似(GGA), 在考虑电子基态自旋阻挫非共线的磁性结构基础上, 研究了具有六角钙钛矿结构HoMnO3材料的磁性、电子和能带结构, 并解释了相关实验结果. 结果表明: 当考虑Mn3+离子的电子自旋在平面内呈阻挫的三角非共线反铁磁(NAFM)排列时, 六角HoMnO3的总能降低、能隙变大、磁矩增大、各原子的位置更接近于实验值, 电子态密度(DOS)分布具有与X光吸收谱测量更为一致的结果. 对非共线磁性结构计算得到的电子态密度和能带结构的分析发现, 实验中观察到的1.7和2.3 eV两个光学吸收峰都源于Mn3+离子3d与平面内O(3, 4) 2p形成的杂化态与Mn [3d3z2-r2]之间的电子跃迁, 而Ho 5d空轨道与平面上的O(3, 4) 2p轨道之间在z方向的强烈杂化驱动HoMnO3产生垂直于平面方向的铁电极化.  相似文献   

9.
李闯  周惦武  彭平  万隆 《化学学报》2012,70(1):71-77
采用基于密度泛函理论的第一原理方法,计算了LiBH4-X(X=O,F和Cl)体系的晶体与电子结构及解氢性能.生成热和H原子解离能的计算结果表明:O原子掺杂优先占据LiBH4间隙位,F置换氢原子位,而Cl则取代BH4单元;O,F和Cl掺杂的LiBH4体系结构稳定性发生变化,其中O提高体系解氢效果明显,而F和Cl掺杂受H原子区域环境的影响.态密度、Mulliken电子占据数和电子密度的分析结果表明:B—H之间较强的共价键是LiBH4结构稳定、解氢困难的电子结构根源,O,F和Cl对LiBH4解氢能力影响主要是掺杂改变了H的s态与B的sp态的杂化特性、以及BH4单元与Li的成键作用.  相似文献   

10.
李炎  陈荣  林理彬  王弘立 《催化学报》1986,7(3):205-210
用DV-X_α方法计算了Ni_3Ti_2O_3,CO-Ni_3Ti_2O_3,CO-Ni_4和CO-Ni_3Ti各原子簇的电子结构。这些原子簇分别模拟担载在Ti_2O_3上的金属Ni,CO在Ti_2O_3担载的Ni表面的化学吸附,CO在纯Ni及Ni_3Ti表面上的化学吸附。比较计算的结果表明,Ti~(3+)离子和金属Ni之间形成强共价键;成键过程中电子由Ni向Ti~(3+)转移,Ni原子带0.07个正电子电荷。计算的Ni-CO键和C—O键的Mulliken重叠集居指出,Ti~(3+)-Ni之间的强成键及电子转移没有导致Ni吸附CO的活性降低及吸附的CO的活化程度的提高。这就表明,电子因素,即Ti~(3+)-Ni之间的强成键及电子转移似乎不是导致所谓的金属载体强相互作用(SMSI)的主要原因。  相似文献   

11.
娄太平  张乐  郭军兴 《化学学报》2010,68(6):466-470
研究了在不同温度下的NaNO3和AgNO3水溶液中Li1.3Ti1.7Al0.3(PO4)3和Na1.3Ti1.7Al0.3(PO4)3离子交换行为.实验表明Li1.3Ti1.7Al0.3(PO4)3和Na1.3Ti1.7Al0.3(PO4)3均显示出了高选择性与Na+和Ag+进行离子交换的特征,且对Ag+的选择性高于Na+.升高温度可显著提高Ag/Li和Ag/Na的交换反应速度.  相似文献   

12.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

13.
通过调节B2O3-Bi2O3-ZnO-Al2O3(BBZA)玻璃的添加量研究其对钛酸钡(BaTiO3)陶瓷烧结条件、晶体结构和介电性能的影响。结果表明:添加适量的BBZA玻璃能够有效地将BaTiO3陶瓷烧结温度由1 350℃降至950℃,并使其致密化。同时,添加BBZA玻璃后,BaTiO3的晶体结构随着烧结温度的升高而发生转变(立方相→四方相)。另外,BBZA玻璃的引入使BaTiO3陶瓷的居里峰得到了有效的抑制和拓宽。陶瓷微观形貌显示,玻璃相均匀分布在BaTiO3晶粒表面。优化的BaTiO3陶瓷制备条件如下:BBZA添加量(质量分数)为2.0%,烧结温度为950℃。在该条件下制备的BaTiO3陶瓷介电常数达到1 364,介电损耗低至1.2%。  相似文献   

14.
The near infrared spectra of aqueous solutions of the ethylsulfates of La, Nd, Gd, Tb, Er, Yb, Lu, Y, and Na have been determined from about 0.2 mol-dm–3 to nearly saturation. The extinction coefficients of water have been calculated taking into account the absorption of ethylslfate anions determined in separate experiments. Their values appeared to be nearly the same as that of pure water. The relative contents of free OH groups in 0.5 and 0.7M solutions have been estimated from the absorbances at 1160 nm. They were lower in solutions of the heavy rare-earth ethylsulfates (Tb, Er, Yb, Lu) than in equimolar solutions of the lighter ones (La, Nd), confirming our previous view that secondary hydration of the heavy trivalent rare-earth cations is distinctly stronger than that of the lighter ones. A comparison of the spectra of these aqueous ethylsulfates with those of perchlorates shows that the structure-breaking ability of the C2H5SO 4 ion is much smaller than that of perchlorate anion.  相似文献   

15.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

16.
针对银精矿样品复杂,难消解的特点,研究了不同酸溶法和碱熔法对样品的消解情况,建立了硝酸,盐酸,氢氟酸,高氯酸消解银精矿的方法。根据元素灵敏度和抗干扰性,选定各元素的测定波长。通过酸溶样和碱熔样测定结果比对,验证了方法准确性。建立了四酸消解-电感耦合等离子体光谱法测定银精矿中铜、铅、锌、砷、镉、钙、镁、锰含量的方法,元素的线性相关系数均在0.9999以上。通过共存元素干扰实验,确定了银精矿中高含量元素(铜、铅、锌、铁、锑、铋等)对测定元素结果没有影响。方法检出限:Cu 0.0063 mg/L, Pb 0.0159 mg/L ,Zn 0.0090 mg/L,As 0.0192 mg/L, Cd 0.0093 mg/L ,Ca 0.0084 mg/L, Mg 0.0075 mg/L, Mn 0.0081 mg/L。测定下限:Cu 0.0105mg/L,Pb 0.0265 mg/L, Zn 0.0150 mg/L, As 0.0320 mg/L, Cd 0.0155 mg/L, Ca 0.0140 mg/L, Mg 0.0125 mg/L,Mn 0.0135 mg/L。3个样品的相对标准偏差在0.87%~3.56%之间,加标回收率在95.00%~103.56%之间。方法流程短,操作简单,快速,灵敏度和再现性高,结果准确可靠,可以满足银精矿中铜、铅、锌、砷、镉、钙、镁、锰含量的测定。  相似文献   

17.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

18.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

19.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

20.
通过调节B2O3‐Bi2O3‐ZnO‐Al2O3(BBZA)玻璃的添加量研究其对钛酸钡(BaTiO3)陶瓷烧结条件、晶体结构和介电性能的影响。结果表明:添加适量的BBZA玻璃能够有效地将BaTiO3陶瓷烧结温度由1350℃降至950℃,并使其致密化。同时,添加BBZA玻璃后,BaTiO3的晶体结构随着烧结温度的升高而发生转变(立方相→四方相)。另外,BBZA玻璃的引入使BaTiO3陶瓷的居里峰得到了有效的抑制和拓宽。陶瓷微观形貌显示,玻璃相均匀分布在BaTiO3晶粒表面。优化的BaTiO3陶瓷制备条件如下:BBZA添加量(质量分数)为2.0%,烧结温度为950℃。在该条件下制备的BaTiO3陶瓷介电常数达到1364,介电损耗低至1.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号