首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
化学势对模拟计算单壁纳米碳管储氢的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用巨正则Monte Carlo分子模拟方法对单壁纳米碳管阵列的储氢性能进行了研究. 发现计算化学势时的误差可导致单壁纳米碳管氢吸附量较大的变化. 采用修正以后的化学势重新计算了298.15 K时单壁纳米碳管阵列的吸附等温线, 计算而得单壁纳米碳管的储氢量更接近实验结果. 另外, 通过与实验结果进行比较, 认为在单壁纳米碳管阵列的储氢过程中可能存在化学吸附过程.  相似文献   

2.
采用高能球磨法制备了3NaBH4/ErF3复合储氢材料, 并研究了其相结构和储氢性能. X射线衍射(XRD)显示, NaBH4和ErF3在球磨过程中未发生反应; 同步热分析(TG-DSC)测试结果表明, 3NaBH4/ErF3体系在420℃开始放氢, 比相同测试条件下纯NaBH4的放氢温度降低了约100℃, 放氢量为3.06%(质量分数). 压力-成分-温度(Pressure-Composition-Temperature, PCT)性能测试结果显示, 3NaBH4/ErF3复合储氢材料在较低的温度(355~413℃)及平台氢压(<1 MPa)下即拥有良好的可逆吸放氢性能, 最高可逆吸氢量可达到2.78%(质量分数), 吸氢后体系重新生成了NaBH4相. 计算得吸氢焓变仅为-36.8 kJ/mol H2; 而放氢焓变为-180.8 kJ/mol H2. NaBH4在ErF3的作用下提高了热动力学性能, 并实现了可逆吸放氢.  相似文献   

3.
Mg-20%(RE-Ni)(RE=La,Y,Mm)复合材料储放氢性能研究   总被引:1,自引:0,他引:1  
通过磁悬浮熔炼和反应球磨相结合的方法成功制备出Mg-20wt%(RE-Ni)(RE=La,Y,Mm)复合储氢材料,主要研究了材料的物相结构和储放氢性能.结果表明.Mg-20wt%(RE-Ni)(RE=La,Y,Mm)复合储氢材料,具有相似的物相结构和吸放氢热力学性能,吸氢相均为MgH2和Mg2Ni,在同一温度下,合金只有一个放氢平台,表明两相具有良好的协同放氢效应.在复合体系中,Mg-20wt%(Y-Ni)具有最佳的综合储氢性能,表明Y具有最佳的催化效果,其在293 K,3.0 MPa H2,10 min的吸氢量和573 K,对0.1 MPa,15 min的放氢量可分别达到3.92%和4.75%,实现了室温快速大量吸氢和较温和条件下的快速放氢.  相似文献   

4.
本文研究了Mg2CoH5纳米晶的制备及其储氢性能。在室温和氩气气氛下,以MgH2和纳米Co为原料,采用球磨法制备了Mg2CoH5纳米晶。对所制备Mg2CoH5的组成、结构和形貌进行了表征,并且对Mg2CoH5的储氢性能进行了研究。实验结果表明,通过该种方法制备了纯度较高(产物纯度为79%)的四方结构Mg2CoH5纳米晶,其形貌呈球形且分布较均匀,最频粒径为80 nm。制备的Mg2CoH5纳米晶具有较低的活化能和较好的吸放氢动力学性能,其放氢的脱附焓和脱附熵分别为-115.0 kJ.mol-1H2和-193.6.1 J.mol-1.K-1H2。再氢化时,在543 K时仅7 min内其吸氢量就达到1.5wt%。  相似文献   

5.
异型碳纳米管储氢性能的分子动力学模拟研究   总被引:4,自引:0,他引:4  
吴红丽  邱介山  郝策  唐祯安 《化学学报》2005,63(11):990-996
采用分子动力学(MD)方法对三种理想的Y型碳纳米管[记为Y(4,4), Y(6,6), Y(10,0)]和三种L型碳纳米管[记为L(9,0), L(6,6), L(10,0)]之储氢性能进行了模拟研究, 并与相应的直线型碳纳米管的储氢能力进行了比较, 同时考察了温度、碳纳米管的直径和螺旋性以及缺陷的位置和大小对异型碳纳米管储氢性能的影响. 结果表明, 在室温和低温条件下, 异型碳纳米管的储氢量高于直线型碳纳米管的储氢量, 且其储氢量大小随温度的降低和碳管直径的增大而增加, 椅式碳纳米管的储氢性能优于齿式碳纳米管, 而缺陷的位置和大小对异型碳管之储氢性能的影响则因碳管的形貌和直径的大小不同而存在差异.  相似文献   

6.
在室温和氩气气氛下, 以MgH2 和纳米Fe为原料, 采用机械合金化(球磨法)制备了Mg2FeH6纳米晶. 考察了球磨参数(时间、 转速)对产物的影响, 对所制备的Mg2FeH6 纳米晶的组成、 结构和形貌进行了表征, 并对其储氢性能进行了测试. 结果表明, 所制备的Mg2FeH6纳米晶为立方结构, 纯度较高(91.4%), 其晶粒尺寸较小, 约为10~30 nm, 但团聚现象较为严重. Mg2FeH6纳米晶具有较低的活化能和较好的吸放氢动力学性能, 其放氢的脱附焓和脱附熵分别为(-42.8±2) kJ/mol和(-72.0±3) J/(mol·K). 在503 K和6 kPa的氢气压力下, Mg2FeH6纳米晶在70 min内放氢量达到2.5%(质量分数); 在2 MPa的氢气压力下, 上述放氢产物具有较快的起始吸氢速率.  相似文献   

7.
戴敏  雷钢铁  张钊  李智  曹湖军  陈萍 《化学学报》2022,80(3):303-309
MgH2因其储氢量高、来源广及价格低廉等优点而备受关注, 但其热力学稳定(ΔH≥76 kJ/mol-H2)以及低温吸/放氢动力学缓慢等问题限制了它在氢能领域的广泛应用. 研究发现, 过渡金属氧化物能够显著改善MgH2的储氢动力学性能. 系统研究了过渡金属氧化物V2O5对MgH2储氢性能的改善作用. 与纯MgH2相比, 在MgH2中添加质量分数为5%的V2O5可以显著改善MgH2的吸/脱氢动力学性能. V2O5掺杂MgH2的起始脱氢温度降至175 ℃, 比同等条件处理的纯MgH2降低了89 ℃. 值得注意的是, V2O5掺杂的MgH2脱氢后, 在室温和3 MPa的氢压下, 30和180 min内吸收H2的质量分数分别为2.1%和3.8%. 同等氢压下, 当温度提高到300 ℃时, 该样品可在1 min内吸收H2的质量分数高达6.7%. 同时催化掺杂样品还表现出良好的循环稳定性, 20次循环后仍能维持质量分数为6.0%以上的可逆储/放氢量. 此外, V2O5改善MgH2储氢性能的反应机理也通过多种手段表征得以阐明.  相似文献   

8.
应用高能球磨法制备Mg-x%Mg1.8La0.2Ni (x=10、20和30) 纳米复合储氢材料. X射线衍射(XRD)、透射电镜(TEM)和选区电子衍射(SAED)测试表明,该复合材料具有纳米晶和非晶态混合结构的性质,吸氢温度降低,较好的吸放氢动力学性能,在423K,2.5MPa氢压的条件下,50s内即可达到最大吸氢量.  相似文献   

9.
采用机械球磨(NaH/Al+Ti)和(NaH/Al+Ti-Zr)复合物的方法加氢制备了NaAlH4配位氢化物, 系统研究了Ti、Ti-Zr催化剂以及不同加氢条件对其可逆储氢行为的影响. 结果表明, 对于NaH/Al体系的吸放氢性能, 共掺金属Ti粉/Zr粉的催化作用比单独掺金属Ti粉的催化作用要好. 随着加氢温度从85 ℃上升到140 ℃, 体系的吸氢容量先增后减, 并在120 ℃时达到最大值; 同时, 发现共掺Ti-Zr催化剂的复合物具有最佳的储氢性能, 在120和85 ℃时的吸氢量分别为4.61%和3.52%(w), 比仅掺Ti 催化剂的复合物分别高出0.40%和0.70%(w)的吸氢量. 随着加氢压力的增大, (NaH/Al+Ti-Zr)复合物的吸氢性能随之提高. XRD和DSC分析结果表明, NaAlH4体系的放氢过程明显发生两步分解反应, 共掺Ti-Zr催化剂的复合物储氢性能优于单独掺Ti 催化剂的原因是, 共掺催化剂能有效改善NaAlH4体系吸放氢反应的动力学性能,并降低体系的放氢温度.  相似文献   

10.
周理  孙艳  苏伟  周亚平 《化学进展》2005,17(4):0-665
通过在大温度、压力范围内系统地测定氢在纳米碳管粉末与压片上的吸附等温线和对所得等温线的理论分析,计算出吸附热,并用超临界气体的吸附模型充分地描述了氢在纳米碳管上的吸附行为,证明纳米碳管储氢的原理是超临界吸附;比表面积和储气温度控制着储气容量.甲烷在干纳米碳管上的吸附机理与氢气相同,但在湿纳米碳管中的存储机理在于甲烷水合物的生成,因此孔容控制储气容量.单位质量多壁管的湿储容量是干储容量的5.1倍 ,单壁管可能产生更大的增强存储作用.  相似文献   

11.
多壁碳纳米管的改性及其储氢性能研究   总被引:10,自引:0,他引:10  
考察了空气处理、混酸处理、H2O2处理和等离子体活化等化学改性和多种活性金属修饰对碳纳米管储氢性能的影响,采用TPD-H2评价装置测试了不同样品吸附的氢气在程序升温后的脱附情况,用峰面积和氢气的校正因子计算出样品吸附氢气的体积,从而计算出碳纳米管的储氢容量.实验结果表明,化学改性和金属修饰均能明显提高碳纳米管的储氢性能,其中经过混合酸和H2O2化学处理并负载质量分数为20%Ni的碳纳米管,在常温常压下的氢气储存的质量分数达到2.55%,比未做任何处理的碳纳米管的储氢容量提高了7倍.  相似文献   

12.
Hydrogen is a kind of clean, sustainable and renewable energy carrier. Of the problems to be solved for the utilization of hydrogen energy, how to store and transport hydrogen has been given high priority on the research agenda. Recently, carbon nanotubes (CNTs) were reported to be very promising candidates for hydrogen uptake[1], which may have possibility to satisfy the benchmark set by the US Department of Energy (DOE) Hydrogen Plan for fuel cell powered vehicles: a gravimetric density …  相似文献   

13.
Density-functional calculations of the adsorption of molecular hydrogen on a planar graphene layer and on the external surface of a (4,4) carbon nanotube, undoped and doped with lithium, have been carried out. Hydrogen molecules are physisorbed on pure graphene and on the nanotube with binding energies about 80-90 meV/molecule. However, the binding energies increase to 160-180 meV/molecule for many adsorption configurations of the molecule near a Li atom in the doped systems. A charge-density analysis shows that the origin of the increase in binding energy is the electronic charge transfer from the Li atom to graphene and the nanotube. The results support and explain qualitatively the enhancement of the hydrogen storage capacity observed in some experiments of hydrogen adsorption on carbon nanotubes doped with alkali atoms.  相似文献   

14.
Hydrogen adsorption on functionalized nanoporous activated carbons   总被引:2,自引:0,他引:2  
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.  相似文献   

15.
Water-soluble multi-walled carbon nanotubes (MWNTs) were prepared by the strong adsorption of Congo red (CR) on MWNTs. The CR-functionalized MWNTs (MWNTs–CR) had a high solubility, a high purity and a special property of strong rebundling when dried, capable of forming uniform and compact MWNTs films with a 3D network structure of nanosizes on a glassy carbon electrode (GCE). Compared with GCE, the electrochemical response of estradiol at a MWNTs–CR modified glassy carbon electrode (MWNTs–CR/GCE) was greatly enhanced, which was further amplified by the addition of trace cetyltrimethylammonium bromide (CTAB) in solution, along with the accomplishment of antifouling capacity of the modified electrode. The weak hydrophobic adsorption of surfactants on the hydrophobic and smooth surface of MWNTs was found to be the key for simultaneously improving the sensitivity and antifouling capacity of carbon nanotube-based electrochemical sensors by surfactants.  相似文献   

16.
A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) film. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9×10^-7 to 2.9×10^-3 mol/L with a correlation coefficient of 0.991, and response time 〈5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.  相似文献   

17.
Du Z  Yu YL  Yan XR  Wang JH 《The Analyst》2008,133(10):1373-1379
Multi-walled carbon nanotubes (MWNTs) were assembled on a silica surface using a polyelectrolyte-assisted layer-by-layer (LBL) assembly technique. The surface-assembled silica spheres with MWNTs (MWNTs/SiO(2)), which serve as a novel solid-phase extraction sorbent for separation/pre-concentration of basic proteins, was investigated. The adsorption behavior of cytochrome c (cyto-c) by MWNTs/SiO(2) spheres agrees well with the Langmuir adsorption model. A thorough scrutiny of the experimental parameters affecting the adsorption of cyto-c from aqueous solution onto the MWNTs/SiO(2) spheres and its subsequent desorption was carried out. A maximum adsorption capacity of cyto-c was derived as 112 mg (cyto-c) g(-1) (MWNTs). A distinct feature of the MWNTs/SiO(2)-packed micro-column provides clear advantages of minimized flow impedance when operated in a flow system, in addition to better separation efficiency as well as the favorable enrichment capability of proteins, characterized by an enrichment factor of 30 by using 2.0 mL of aqueous solution. The practical applicability of the MWNTs/SiO(2) spheres as a sorbent for the isolation of basic proteins from acidic protein species was demonstrated by effective separation of cyto-c from bovine serum albumin (BSA).  相似文献   

18.
Nanostructured Pt functionalized multiwalled carbon nanotubes (MWNTs) produced by catalytic chemical vapor deposition are good room-temperature hydrogen sensors. MWNTs have been synthesized by catalytic chemical vapor deposition of acetylene using a fixed-bed catalytic reactor over hydrides of Mm(0.2)Tb(0.8)CO2 obtained through hydrogen decrepitation technique. Purified and chemically treated MWNTs have been functionalized by Pt resulting in nanostructured dispersion of Pt on CNTs. Structural, morphological, and vibrational characterizations have been carried out using XRD, SEM, TEM, HRTEM, Raman spectroscopy, and FTIR spectroscopy, respectively. Dispersion of Pt on MWNTs was confirmed by elemental analysis using EDX. Systematic investigations of hydrogen sensing properties of Pt-MWNT ensembles have been carried out. The Pt-MWNTs thin films are stable after several cycles of adsorption and desorption. The change in electrical resistance due to hydrogen adsorption is reversible, with increases to saturation on exposure to hydrogen gas. The result demonstrates that the Pt-MWNTs are p-type semiconductor materials, and chemically treated MWNTs functionalized with Pt show the better hydrogen sensing response at room temperature.  相似文献   

19.
Shen S  Ren J  Chen J  Lu X  Deng C  Jiang X 《Journal of chromatography. A》2011,1218(29):4619-4626
For the first time, magnetic multiwalled carbon nanotubes (MWNTs) combined with near-infrared radiation-assisted desorption (NIRAD) was successfully developed for the determination of tissue distribution of doxorubicin liposome injects (DOXLI) in rats. The magnetic MWNTs nanomaterials were synthesized via a simple hydrothermal process. Magnetic Fe(3)O(4) beads, with average diameters of ca. 200 nm and narrow size distribution, were decorated along MWNTs to form octopus-like nanostructures. The hybrid nanocomposites provided an efficient way for the extraction and enrichment of doxorubicin (DOX) via π-π stacking of DOX molecules onto the polyaromatic surface of MWNTs. DOX adsorbed with magnetic MWNTs could be simply and rapidly isolated through a magnetic field. In addition, due to the near-infrared radiation (NIR) absorption property of MWNTs, irradiation with NIR laser was employed to induce photothermal conversion, which could trigger rapid DOX desorption from DOX-loaded magnetic MWNTs. Extraction conditions such as amount of magnetic MWNTs added, pH values, adsorption time, desorption solvent and NIR time were investigated and optimized. Method validations including linear range, detection limit, precision, and recovery were also studied. The results showed that the proposed method based on magnetic MWNTs coupled to NIRAD was a simple, rapid and high efficient approach for the analysis of DOXLI in rat tissues.  相似文献   

20.
Tin oxide doped with multi‐walled carbon nanotubes (MWNTs) was prepared via a wet‐chemical process and characterized with x‐ray diffraction (XRD) and transmission electron microscope (TEM). Meanwhile, the conductivity of composites obtained was measured using Source Meter. The results show that carbon nanotubes have great effect on the electrical property of SnO2 nanoparticles. Compared with undoped SnO2 nanoparticles, the resistivity of SnO2 nanoparticles doped with 0.3‰ wt MWNTs decreased by a factor of 37. This may be ascribed to the presence of π energy levers of MWNTs and their high aspect ratio. Moreover, the effect of annealing temperature on the electrical property of SnO2 nanoparticles doped with MWNTs also was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号