首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through the Diels–Alder reaction between cyclopentadiene groups attached to polystyrene in the presence of zirconocene, novel polystyrene‐supported metallocene catalysts were prepared. A novel method for immobilizing metallocene catalysts was investigated, and the resultant polystyrene‐supported metallocene for olefin polymerization was studied. The results of olefin polymerization showed that different crosslinking degrees of support in the catalyst system had significant effects on the catalytic behavior. The influence of the [Al]/[Zr] molar ratio and the temperature on the (co)polymerization activity was studied. When 1‐hexene and 1‐dodecene were used for copolymerization with ethylene, an obvious positive comonomer effect was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2650–2656, 2005  相似文献   

2.
Polyolefin-clay nanocomposites are finding many new applications because of their improved properties, such as high modulus, elevated scratch resistance and low gas permeability. Currently, these composites are produced by melt blending organically modified clay with polyolefins. The most challenging step in this process is the intercalation and exfoliation of the clay to produce a homogenously dispersed phase at the nanoscale. A promising alternative to melt blending is in-situ polymerization, where the polymer is produced between the clay layers in the polymerization reactor. In-situ polymerization of olefins with metallocene catalysts supported on clay can produce nanocomposites using conventional polymerization reactors, provided that the clay can be used as a support for the olefin polymerization catalyst. In this approach, the clay fulfills the functions of catalyst support and dispersed phase in the final nanocomposite. In this work, a mathematical model describing particle growth during in-situ polymerization of ethylene with a metallocene catalyst supported on clay will be discussed. The model expands the approach of the multi-grain model used in heterogeneous olefin polymerization to account for the layered structure of clays.  相似文献   

3.
With the development of methods to support metallocenes and methylaluminoxane cocatalysts on suitable carriers, it became possible to combine the specific advantages of homogeneous metallocene catalysis with those of heterogeneous Ziegler catalysts in olefin polymerization. By means of ethylene polymerization it could be shown that the method of supporting methylaluminoxane and metallocene on porous silica has a substantial influence on the progress of polymerization. In particular, fragmentation of catalyst particles during polymerization can be circumvented, maintaining the catalyst activity, if active catalyst sites are being generated on the particle surface only. A method of preparation for such newly designed supported metallocene catalysts is presented, where the active catalyst sites are located exclusively on the particle surface. Furthermore, the kinetics of ethylene polymerization and morphology properties prior to and after polymerization are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 677–682, 1999  相似文献   

4.
单茂金属烯烃聚合催化剂*   总被引:1,自引:0,他引:1  
王伟  郑刚 《化学进展》2009,21(4):677-686
本文综述了近年来带有给电子配体的单茂金属化合物应用于烯烃聚合的研究。带有给电子配体的单茂金属化合物是目前烯烃配位聚合催化剂的研究热点之一。作为新型的聚合催化剂,这类催化剂具有合成简单、结构清晰的特点,用于催化烯烃聚合,可得到高聚合活性,同时聚合物可得到高的分子量。用于共聚时,具有很好的共聚能力。通过共聚,可以得到Zieler-Natta催化剂和传统茂金属催化剂不能得到的新共聚物。通过调整催化剂上茂配体和给电子配体的结构,可以方便地调节聚合行为,从而调整聚合物的结构。文中涉及了乙烯、alpha-烯烃的均聚与共聚,乙烯与环烯烃共聚合,苯乙烯聚合等方面的研究。  相似文献   

5.
含茂金属的双组分或多组分催化体系的研究与应用   总被引:3,自引:0,他引:3  
评述了含茂金属的双组分或多组分催化体系的基础研究与应用。大多数含茂金属的双组分或多组分催化体系用于制备宽分子量分布聚烯烃,尤其是宽分布聚乙烯,少数用于制备支化或嵌段聚合物。双组分或多组分催化体系已经成为分子剪裁与材料设计的重要手段之一。  相似文献   

6.
2,6‐Diacetylpyridinebis (2,6‐diisopropylani) iron dichloride, a late‐transition metal catalyst for olefin polymerization, was supported on SBA‐15 successfully and the property of the supported catalyst was carefully studied. Ethylene polymerization was systematically investigated in the presence of MAO under various conditions employing this type of catalyst system. In general, after support, a decrease in the catalytic activity was observed and higher molecular weight and fibrous morphology of polyethylene were obtained. The “extrusion polymerization” phenomenon was observed in ethylene polymerization by using the supported catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4830–4837, 2004  相似文献   

7.
合成了6种单碳桥联的含芴(Flu)茂(Cp)基B族茂金属催化剂,研究了它们催化烯烃聚合的能力.通过IR,1HNMR,EI-MS和元素分析对化合物进行了表征.用所合成的茂金属化合物与MAO所组成的催化体系对乙烯、丙烯的聚合进行了研究.其中金属为Ti的催化剂没有聚合活性或活性极低.金属为Zr的催化剂有一定的催化活性,用不同的催化剂得到的聚合物性质有一定的差异.  相似文献   

8.
This critical review highlights the "ligand oriented catalyst design concept", a new catalyst design concept for olefin polymerization that has led to the development of high-activity catalysts. The concept has created a series of highly active ethylene polymerization catalysts, many of which show high activities comparable to those of group 4 metallocene catalysts. Moreover, these catalysts display unique polymerization catalysis to produce a wide variety of polymers that possess unprecedented molecular architectures that are either difficult or impossible to achieve using conventional catalysts (98 references).  相似文献   

9.
A novel carrier of ultradispersed diamond black powder (UDDBP) was used to support metallocene catalyst. Al2O3 was also used as carrier in order to compare with UDDBP. Supported catalysts for ethylene polymerization were synthesized by two different reaction methods. One way was direct immobilization of the metallocene on the support, the other was adsorption of MAO onto the support followed by addition of the metallocene. Four supported catalysts Cp2ZrCl2/UDDBP, Cp2ZrCl2/Al2O3, Cp2ZrCl2/MAO/UDDBP and Cp2ZrCl2/Al2O3/MAO were obtained. The content of the zirconium in the supported catalyst was determined by UV spectroscopy. The activity of the ethylene polymerization catalyzed by supported catalyst was investigated. The influence of Al/Zr molar ratio and polymerization temperature on the activity was discussed. The polymerization rate was also observed.  相似文献   

10.
双核茂金属催化剂催化聚合反应进展   总被引:2,自引:0,他引:2  
综述了双核茂金属化合物的研究进展及其在烯烃和极性单体聚合方面的应用及双核茂金属化合物的合成及性能研究;并对双核催化剂的作用机理、催化剂结构与性能的关系也做了介绍。  相似文献   

11.
负载型烯烃聚合催化剂合成的新方法   总被引:3,自引:0,他引:3  
王文钦  王立 《化学学报》2002,60(11):1899-1908
介绍了负载型烯烃聚合催化剂合成的新方法,探讨了不同载体负载的Ziegler- Natta催化剂各组分之间的相互作用机理及活性中心的形成途径。对负载茂金属催 化剂的新型载体及新的负载方法进行了评述。  相似文献   

12.
以甲基铝氧烷(MAO)为助催化剂的茂金属催化剂虽然具有催化活性高、分子量分布窄、聚合物化学组成均匀等优点,但其极高的Al/Zr比和聚合物颗粒形态差等缺点限制了其工业化应用,因此对茂金属催化剂的负载化成为近年来的研究热点.在众多的载体中,球形MgCl2是研究得很少的一类载体,文献中曾采用先负载主催化剂茂金属配合物,聚合时再加入助催化剂MAO的方法[1],由于加入的MAO与主催化剂的络合能力很强,会使部分载上的主催化剂溶解下来,成为均相聚合[2,3],导致聚合物颗粒形态差,且粘釜现象严重.我们则采用相反的思路,即先将助催化剂MAO负载在球形MgCl2上,制得MgCl2/MAO,在聚合前再将MgCl2/MAO与Et[Ind]2ZrCl2混合陈化,并立即在少量烷基铝活化下引发乙烯聚合[4],实验结果表明,该催化剂聚合活性高、聚合物的颗粒形态好、且不粘釜,是一种新型的载体催化剂.由于烷基铝的加入可使催化剂的活性大幅度提高,所以本文将烷基铝也称作助催化剂,来研究其对该载体催化剂催化乙烯聚合的影响.  相似文献   

13.
烯烃高效催化剂及聚合与共聚合的研究   总被引:1,自引:0,他引:1  
伍青  林尚安 《高分子通报》2005,(4):35-41,22
为中山大学高分子研究所烯烃配位聚合研究室在高效Ziegler-Natta催化剂、茂金属催化剂烯烃聚合与共聚合方面部分研究工作的概述。重点叙述了催化剂的设计、过渡金属配合物配体结构及聚合条件对乙烯、丙烯、1-丁烯、丁二烯、苯乙烯等烯烃单体聚合及共聚合活性以及聚合产物结构和分子量的影响。  相似文献   

14.
茂金属催化剂负载对丙烯间规聚合的影响   总被引:1,自引:0,他引:1  
茂金属催化剂具有活性高、定向性好的特点 .采用茂金属催化剂 ,Ewen[1] 首次在常温、常压下实现了丙烯的间规聚合 ,得到了高间规度 (rrrr >80 % )的间规聚丙烯 (sPP) .sPP因其透明性好、耐冲击及耐辐射 ,室温韧性、热密封性及透气性好等特性 ,作为共混材料 ,在医疗产品、包装、纤维、薄膜和汽车配件等方面显示了广阔的应用前景 .国内外许多公司都投入大量人力、物力进行研究 .其中 ,Fina公司处于技术领先地位 .Fina公司继 1 987年开发出间规选择性茂金属催化剂后 ,成功地进行了中试聚合实验 ,得到了商用sPP .1 994…  相似文献   

15.
The polymerization of ethylene was carried out with a novel in situ supported metallocene catalyst that eliminated the need for a supporting step before polymerization. In the absence of trimethyl aluminum (TMA), in situ supported Et[Ind]2ZrCl2 was not active, but the addition of TMA during polymerization activated the catalyst. Et[Ind]2Zr(CH3)2 was active even in the absence of TMA, whereas the addition of TMA during polymerization enhanced the catalytic activity. The polymerization‐rate profiles of the in situ supported metallocene catalysts did not show rate decay as a function of time. A polymerization mechanism for the in situ supported metallocene catalysts is proposed for this behavior. During polymerization, the in situ supported metallocene catalysts may deactivate, but homogeneous metallocene species present in the reactor may form new active sites and compensate for deactivated sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 462–468, 2000  相似文献   

16.
The olefin polymerizations were carried out by using silica supported metallocene/MAO catalysts and MgCl2 supported Ziegler-Natta catalysts under mild reaction conditions and stopped at very low yield. The surface and cross sectional morphology of the polymer particles were characterized by using scanning electron microscopy (SEM). A homogeneous distribution of (co)catalyst on the support material is a prerequisite condition to get a homogeneous fragmentation and uniform polymer particle morphology. In the present work the catalysts show two different fragmentation behaviors. They can gradually fragment from the outer to the inner surface of the catalyst particle, or instantaneously break up into a large amount of small sub-particles at the beginning of the polymerization. The incorporation of comonomer does not change the general catalyst fragmentation scheme but delays the catalysts break-up progress.  相似文献   

17.
载体茂金属用于原位聚合反应制备LLDPE研究   总被引:4,自引:0,他引:4  
以Ti(OR) 4为二聚催化剂 ,以载体茂金属催化剂为共聚合催化剂 ,以烷基铝为唯一助催化剂 ,在乙烯为聚合单体的条件下原位聚合制备LLDPE ,成功地解决了两种催化剂之间的相互干扰的问题 ,该催化剂体系具有聚合活性高 ,所得聚合物密度低 ,聚合物形态可调节等优点  相似文献   

18.
The transition state of the olefin insertion process of metallocene catalysts can be determined by adopting the semiempirical PM3 model. In computational chemistry, the computational methods most employed are the ab initio method and density functional theory, which are very time consuming. The semiempirical molecular orbital method requires much less computational resources than the above methods. However, the accuracy and reliability of the semiempirical molecular orbital method remains to be determined. The PM3 model is the most recently developed the semiempirical molecular orbital method and can also be applied to transition metal calculations. This study is intended to investigate the reliability of computational results determined using semiempirical PM3 model on metallocene catalysts through comparison with published results on the density functional theory (DFT). The saddle point finding procedure is adopted to find the transition state of the ethylene insertion process of metallocene catalysts. Results on the geometry and energy trends of the ethylene insertion process of metallocene catalysts determined using the PM3 model are in good agreement with the DFT results. In addition, the saddle point of the potential energy surface of ethylene insertion is verified in accordance with the eigenvalue of the vibrational frequency spectrum. Correct eigenvalues indicate that the correct saddle point of the potential energy surface of ethylene insertion has been successfully located. Hence, the eigenvalue of the vibrational frequency spectrum is a valuable reference in terms of saddle point justification. Computational results and vibrational frequency spectrum analysis demonstrate that the PM3 model can be used to locate the correct saddle point of the potential energy surface. The results obtained using the PM3 model confirm that the eigenvalue of the transition state lies nearly on the vibrational frequency spectrum. The eigenvalues are also analyzed, providing a valuable reference for further studies of the transition state of olefin insertion of metallocene catalysts. The activation energies for the olefin insertion reaction are also studied for evaluation of the catalyst.  相似文献   

19.
双组分茂金属催化剂催化乙烯聚合的研究   总被引:1,自引:0,他引:1  
选择能形成支链的不对称桥联茂金属化合物Me2 C[(Cp) (Ind) ]ZrCl2 和非桥联的不同结构的茂金属化合物二氯二 (烯基取代环戊二烯 )锆如 ( Cp) 2 ZrCl2 ,(Cp) 2 ZrCl2 和 (Cp) 2 ZrCl2 ,以MAO为助催化剂 ,分别组成三组双组分茂金属催化剂的催化体系 ,催化乙烯聚合 .结果表明 ,两类催化剂组成的双组分茂金属催化体系催化乙烯聚合能得到支化的宽分子量分布的聚乙烯 ;聚合温度和改变两种茂金属催化剂的摩尔比对催化活性和分子量有很大影响 .因此可以利用改变双组分茂金属催化剂的摩尔比例和聚合温度来调控聚合物的分子量和分子量分布 .改变两种茂金属催化剂的摩尔比和聚合温度也能使聚合物的结晶度发生改变  相似文献   

20.
Recent advances in transition metal catalyzed olefin polymerization and melt processing stimulate the production of new polymers derived from old monomers. Modern polyolefin processes do not require polymer purification and give excellent control of molecular and supermolecular polyolefin architectures. Progress in catalyst design and preparation of tailor-made homo-and copolymers is highlighted for isotactic, syndiotactic, atactic and stereo-block polypropylene (PP), novel 1-olefin copolymers, and ethylene copolymers with polar monomers, e.g., CO and acrylics. Today polyethylene short-and long-chain-branching is controlled either by uniform ethylene copolymerization with 1-olefins using single-site” metallocene catalysts, or by migratory polyinsertion of ethylene, respectively. Stiff cycloaliphatic polymers expand the frontiers of polyolefins into engineering applications. New families of polyethylenes and EPM with pendent polypropylene chains are obtained via copolymerization of PP macromonomers or polymer-analoguous coupling of functionalized PP during melt processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号