首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Novel hollow microcapsules based on iron-heparin complex multilayers   总被引:2,自引:0,他引:2  
Iron-polysaccharide complex have been extensively utilized in the treatment of iron deficiency anemia for parenteral administration. Herein, a novel iron-heparin complexed hollow capsules with nanoscaled wall thickness have been fabricated by means of alternating deposition of ferric ions (III) (Fe+) and heparin (Hep) onto the surface of submicroscaled (488 nm) and microscaled (10.55 microm) polystyrene latex particles via both electrostatic interaction and chemical complexation processes, followed by dissolution of the cores using tetrahydrofuran. Confocal micrographs and atomic force microscopy (AFM) images prove that iron-heparin complexed submicroscaled hollow capsules keep spherical shapes in solution and even after drying. The activated partial thromboplastin time (APTT) assay shows that complexing with ferric ions do not compromise the catalytic capacity of heparin to promote antithrombin III-mediated thrombin inactivation. The anticoagulant activity value of (Fe3+/Hep)8 capsules is evaluated to be about 95.7 U/mg, indicating that approximately 0.55 mg heparin was in 1 mg powder of submicroscaled (Fe3+/Hep)8 hollow capsules. Compared with the same dosage of heparin, iron-heparin complexed hollow capsules display a more prolonged anticoagulant duration than heparin. All these results reveal that such submicroscaled iron-heparin complexed hollow capsules have application potential as an injectable anticoagulant vehicle.  相似文献   

2.
Electrostatic multilayers of chitosan (CHI)/sodium alginate (SA) and CHI/poly(styrene sulfonate) sodium salt (PSS) were alternatively coated on electrospun cellulose acetate (CA) fiber mat. Morphologies of the composite membranes were characterized by scanning electron microscopy. The morphology of the CHI/SA-coated membrane was denser than the CHI/PSS-coated one. The top layers consisted of carboxyl and sulfonic functional groups for SA and PSS layers, respectively. Amino groups of CHI were only presented in slight quantity. X-ray photoelectron spectroscopy (XPS) confirmed the deposition of the amino groups of CHI on the multilayer membrane surface. These composite membranes were characterized for its water permeability where the water flux decreased with an increase in the number of the bilayers. The water flux was in the range of 60 and 40 L m−2 h−1 for 15 and 25 bilayered membranes, respectively. The sodium chloride (NaCl) solution flux was lower than the pure water flux due to the effect of osmotic pressure, and it decreased with an increase in the NaCl concentration. The rejection of NaCl increased substantially with the number of the bilayers of the polyelectrolytes multilayers. The level of NaCl rejection from this work was in the range of 6% and 15% for 15 and 25 bilayered membranes, respectively.  相似文献   

3.
Phase change material microcapsules were prepared by complex coacervation of silk fibroin (SF) and chitosan (CHI). n-Eicosane was used as the core material. The effects of SF/CHI ratio, and percentage of cross-linking agent and n-Eicosane content on the properties of microcapsules were studied. The size distribution and the surface morphology of microcapsules were characterized by optical and scanning electron microscopy. The encapsulation of core material was determined by energy dispersive spectrometer analysis. The results indicated that SF/CHI microcapsules were prepared successfully. Microcapsules had smooth outer surface when the ratio of SF to CHI was close to 5. On the other hand, at high SF/CHI ratios (≥14), microcapsules showed a two-layer structure, an inner compact layer, and an outer, more porous, sponge-like layer. The highest microencapsulation efficiency was obtained at a SF/CHI ratio of 20 in the presence of 0.9% cross-linking agent and of 1.5% n-Eicosane content.  相似文献   

4.
The formation ofpolysaccharide films based on the alternate deposition of chitosan (CHI) and hyaluronan (HA) was investigated by several techniques. The multilayer buildup takes place in two stages: during the first stage, the surface is covered by isolated islets that grow and coalesce as the construction goes on. After several deposition steps, a continuous film is formed and the second stage of the buildup process takes place. The whole process is characterized by an exponential increase of the mass and thickness of the film with the number of deposition steps. This exponential growth mechanism is related to the ability of the polycation to diffuse "in" and "out" of the whole film at each deposition step. Using confocal laser microscopy and fluorescently labeled CHI, we show that such a diffusion behavior, already observed with poly(L-lysine) as a polycation, is also found with CHI, a polycation presenting a large persistence length. We also analyze the effect of the molecular weight (MW) of the diffusing polyelectrolyte (CHI) on the buildup process and observe a faster growth for low MW chitosan. The influence of the salt concentration during buildup is also investigated. Whereas the CHI/HA films grow rapidly at high salt concentration (0.15 M NaCl) with the formation of a uniform film after only a few deposition steps, it is very difficult to build the film at 10(-4) M NaCl. In this latter case, the deposited mass increases linearly with the number of deposition steps and the first deposition stage, where the surface is covered by islets, lasts at least up to 50 bilayer deposition steps. However, even at these low salt concentrations and in the islet configuration, CHI chains seem to diffuse in and out of the CHI/HA complexes. The linear mass increase of the film with the number of deposition steps despite the CHI diffusion is explained by a partial redissolution of the CHI/HA complexes forming the film during different steps of the buildup process. Finally, the uniform films built at high salt concentrations were also found to be chondrocyte resistant and, more interestingly, bacterial resistant. Therefore, the (CHI/HA) films may be used as an antimicrobial coating.  相似文献   

5.
Electrophoretic deposition (EPD) method has been developed for the fabrication of hydroxyapatite (HA)–CaSiO3 (CS)–chitosan composite coatings for biomedical applications. The use of chitosan enabled the co-deposition of HA and CS particles and offered the advantage of room temperature processing of composite materials. The coating composition was varied by the variation of HA and CS concentrations in the chitosan solutions. Cathodic deposits were obtained as HA–CS–chitosan monolayers, HA–chitosan/chitosan multilayers or functionally graded materials (FGM) containing HA–chitosan and CS–chitosan layers of different composition. The thickness of the individual layers was varied in the range of 0.1–20 μm. The deposition yield was studied at different experimental conditions and compared with the results of modeling. It was shown that the moving boundary model for the two component system can explain the non-linear increase in the deposition yield with increasing HA concentration in chitosan solutions. The obtained coatings were studied by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and scanning electron microscopy (SEM). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies showed that these coatings provided corrosion protection of stainless steel substrates in Ringer's physiological solution. The deposition mechanism and kinetics of deposition have been discussed.  相似文献   

6.
The results of the interaction between the protonated chitosan (CHI) macromolecule and the acetate ion in dilute acetic acid solutions were studied by Fourier transform Raman spectroscopy and quantum-chemical modeling. The complexation of CHI with the acetate ion showed itself as the 934 cm?1 band in the Raman spectrum, which suggests the formation of [CHI+ · CH3COO?] type ion pairs. It was concluded that a comparative analysis of the integrated intensities of the Raman bands in the range 880–940 cm?1 makes it possible to judge about the relative content of hydrated acetate ions, CHI macromolecules of the [CHI+ · CH3COO?] complex, and acetic acid molecules not involved in CHI protonation.  相似文献   

7.
Layer-by-layer deposition of sodium carboxymethylcellulose (NaCMC) and chitosan (CHI) was used to create polyelectrolyte multilayers on ellipsoidal beta-FeOOH particles at low ionic strength. Using electro-optics, we investigated the formation of films in dependence on the polyelectrolyte charge density by controlling pH of the dipping solutions. We found out a linear growth of the CMC/CHI films when they are constructed from highly charged CHI (at pH 4.0) and weakly charged NaCMC (at pH 4.0 and 5.5). The hydrodynamic thickness of the film constructed at pH 4.0/4.0 is unusually large for a linearly growing film (ca. 220 nm after deposition of 8 bilayers), but it strongly decreases (ca. 4 times) with increasing ionization of NaCMC (at pH 5.5). In both cases, the multilayer buildup proceeded through a series of adsorption-desorption steps. This was explained by a partial loss of CHI from the film surface on exposure to the solution of longer NaCMC molecules. The irregular film growth correlated quite well with the variations in the electrical polarizability of the polymer-coated particles. This correlation enabled us to conclude that the adsorption of both polymers occurs only on the film surface, with no diffusion in and out of the film bulk during deposition of each CMC/CHI bilayer.  相似文献   

8.
A new synthetic approach for the preparation of segmented polyurethaneurea (SPUU)–PEO–Heparin graft copolymers (B–PEO–Hep) has been developed. The procedure involved the coupling of hexamethylene diisocyanate (HMDI) to soluble Biomer® (B) through an allophanate/biuret reaction. The free isocyanate (NCO) groups attached to Biomer® were then coupled to PEO terminal hydroxyl groups to form PEO grafted Biomer® (B–PEO). B–PEO free hydroxy groups were modified with HMDI to introduce terminal isocyanate groups. The NCO functionalized B–PEO was then coupled to heparin (Hep) functional groups (? OH, ? NH2) producing B–PEO–Hep graft copolymer. Synthetic intermediates were confirmed by FTIR, NCO group determination, and toluidine blue heparin assay. Physical characterization techniques, such as contact angle measurements, water swelling, light scattering measurements, and DSC thermal analysis, detailed properties of the graft copolymer containing covalently bound heparin. This new heparinized copolymer can be applied as a coating on other existing blood contacting surfaces without changing bulk properties. The heparin bioactivity observed attests to the usefulness of this new procedure as a coating to improve the blood compatibility of blood-contacting surfaces.  相似文献   

9.
聚乳酸/肝素缓释微囊复合材料组织相容性研究   总被引:2,自引:0,他引:2  
研究了三种不同包覆材料的肝素微胶囊/聚乳酸(PLA)复合材料的组织相容性。结果表明,随着胶囊中壳聚糖浓度的增大,肝素的释放速率变慢。皮肤刺激、皮内刺激、热原、全身急性毒性和细胞培养等试验表明,制备的复合材料在生物学评价试验中均呈阴性反应,材料无明显毒性,材料中不存在潜在致敏性物质,所含热原含量符合生物体的要求。由此表明,肝素缓释微胶囊/PLA复合材料符合三维多孔材料的要求,且具有优良的组织相容性。  相似文献   

10.
甲基紫与肝素钠结合反应的电化学研究及分析应用   总被引:6,自引:0,他引:6  
孙伟  焦奎  丁雅勤 《化学学报》2006,64(5):397-402
应用电化学分析法研究了在pH 1.5的酸性反应条件下肝素钠与甲基紫的结合反应. 甲基紫在滴汞电极上有一个不可逆的还原峰, 峰电位为-0.58 V (vs. SCE), 加入肝素钠后峰电位发生正移且峰电流下降, 利用电化学方法对电极反应过程进行了研究, 结果发现两者结合后生成了一种电化学活性的复合物, 导致溶液的电化学参数发生了变化, 求解出结合比为1∶3, 结合常数为2.47×1014, 对结合反应条件和电化学检测条件进行了优化, 在最佳条件下峰电流的降低同肝素钠的浓度在0.2~4.0 mg/L范围内呈线性关系, 线性回归方程为∆Ip (nA)=-724.9+1741.4c (mg/L) (n=11, γ=0.994), 检测限为0.072 mg/L. 将本方法应用于肝素钠样品的测定, 结果令人满意. 对常见干扰物质的影响进行了考察, 表明本方法具有较好的选择性.  相似文献   

11.
In the present study, the cell attachment/spreading behaviour of L929 mouse fibroblasts on chitosan membranes was evaluated by using physico-chemical properties. For this purpose chitosan membranes were prepared and then photochemically modified with the cell adhesive peptide RGDS (Arg-Gly-Asp-Ser). The physico-chemical properties of unmodified (CHI) and RGDS-modified chitosan (CHI-RGDS) membranes were evaluated by calculating surface free energy (γsv) and interfacial free energy (γsw) values using captive bubble contact angle measurements and harmonic mean equation. The cell attachment experiments were performed both in 10% FBS containing and serum-free media with CHI and CHI-RGDS membranes. Eventually, it was not possible to predict a direct relationship between the change in physico-chemical properties and L929 cell attachment behaviour. The experimental results obtained from cell attachment agree with the theoretical prediction for the free energy of adhesion except for the cell attachment on CHI membrane in serum-free medium. Although a negative interfacial free energy of adhesion was calculated for CHI membrane in serum-free medium (ΔFadh = −2.19 ergs/cm2), the cell attachment was poor (70%) compared to CHI-RGDS (90%) and none of the cells were spread on CHI surface to gain a fibroblastic morphology. Negative energy of adhesion was calculated for CHI and CHI-RGDS in 10% FBS medium, in which 100% of cells were attached on the membranes correlating with the thermodynamic approach. It can be suggested that, adsorption of serum proteins strongly affected the cell attachment meanwhile the presence of biosignal RGDS molecules triggered the cell spreading in serum medium.  相似文献   

12.
A novel stabilized hemocompatible multicomponent coating was engineered by consecutive alternating adsorption of two polysaccharides, alginate (Alg) and heparin (Hep), onto a Nitinol surface via electrostatic interaction in combination with photoreaction in situ. For this purpose, a photosensitive cross-linker, p-diazonium diphenyl amine polymer (PA), was used as an interlayer between alginate and heparin. The optical intensity of UV/vis spectra increased linearly with the number of layers, indicating the buildup of a multilayer structure and uniform coating. Photo-cross-linking resulted in higher stability without compromising its catalytic capacity to promote antithrombin III (ATIII)-mediated thrombin inactivation. Chromogenic assays for heparin activity proved definitively that anticoagulation activity really comes from surface-bound heparin in multilayer film, not from solution-phase free heparin that has leaked from multilayer film. The activated partial thromboplastin time (aPTT) assay showed that both (PA/Hep)8- and (PA/Alg/PA/Hep)4-coated Nitinol were less thrombogenic than the uncoated one. Yet, the latter was found to be more stable under a continuous shaken wash. In addition, (PA/Alg/PA/Hep)4 film exhibited lower surface roughness and higher hydrophilicity than (PA/Hep)8. As a result, hemolysis of (PA/Alg/PA/Hep)4 (0.34 +/- 0.064%) was lower than (PA/Hep)8 (0.52 +/- 0.241%). The naked Nitinol and (PA/Hep)8-coated Nitinol showed relatively strong platelet adhesion. On the contrary, no sign of any cellular matter was seen on the (PA/Alg/PA/Hep)4 surface. It is believed that the phenomenon of interlayer diffusion resulted in blended structures, hence, the enhanced wettability and antifouling properties after the incorporation of alginate layers. It is likely that the cooperative effect of alginate and heparin led to the excellent blood compatibility of the (PA/Alg/PA/Hep)4 coating. To simplify, there is greater advantage in utilizing cross-linked alginate/heparin surfaces rather than merely the heparin surface for improving blood- and tissue-compatible devices.  相似文献   

13.
The influence of ionic strength and protein concentration on the transport of bovine serum albumin (BSA), ovalbumin and lysozyme through chitosan (CHI)/polystyrenesulfonate (PSS) multilayers on polyether sulfone supports are investigated under ultrafiltration conditions. The percentage transmission and flux of BSA, ovalbumin and lysozyme were found to increase with increase in salt concentration in the protein. The percentage transmission of BSA through 9 bilayer membrane was found to increase from 5.3 to 115.6 when the salt concentration was varied from 0 to 1 M. It was observed that 0.1 M NaCl in BSA solution is capable of permeating all the BSA. When the salt concentration in BSA was further increased, a negative solute rejection (solute enrichment in permeate) was found to take place. With 9 bilayer membrane, the percentage transmission of ovalbumin was found to increase from 23.3 to 125.8 when the salt concentration in protein was increased from 0 to 0.05 M. The effect of protein concentration on protein transport is studied taking BSA as a model protein. BSA was rejected by the multilayer membrane at all the studied concentrations (0.25, 0.5, 1 and 2 mg/ml). With increase in feed concentration, maximum rejection of protein occurred at higher number of CHI/PSS bilayers. BSA solution flux was found to decrease with an increase in BSA concentration. This study indicates that it is possible to fine tune the transport properties of proteins through multilayer membranes by varying the concentration and ionic strength of protein solutions.  相似文献   

14.
A facile approach has been established to generate cellulose/chitosan hybrid nanofibers with full range of compositions by electrospinning of their ester derivatives, cellulose acetate (CA) and dibutyryl chitin (DBC), followed by alkaline hydrolysis to cellulose (Cell) and chitosan (CS). DBC was synthesized by acid-catalyzed acylation of chitin (CHI) with butyric anhydride and the newly formed butyl groups on C3 and C6 were confirmed by FT-IR and 1HNMR. DBC had robust solubility in acetone, DMAc, DMF, ethanol, and acetic acid, all except ethanol were also solvents for CA, allowing mixing of these ester derivatives. Fiber formation by electrospinning of either DBC or CA alone and together in these common solvents and their mixtures were studied. The 1/1 acetone/acetic acid was found to be the optimal solvent system to generate fibers from either DBC or CA as well as their mixtures at all CA/DBC ratios, resulting in hybrid fibers with diameters ranging from 30 to 350 nm. DBC and CA were well mixed and showed no phase separate in the hybrid fibers. Alkaline hydrolysis (NaOH) of the equal mass CA/DBC nanofibers regenerated Cell and CHI readily via O-deacylation, then proceeded to further deacetylate CHI to CS via N-deacetylation at higher alkaline concentrations and/or temperatures. Under conditions studied, hydrolysis with 5N NaOH at 100 °C for 3 h was optimal to regenerate cellulose/chitosan hybrid nanofibers.  相似文献   

15.
Chemical equilibria in aqueous solutions of disodium adenosinetriphosphate (Na2H2ATP), high-molecular-weight heparin (H4Hep) and Na2H2ATP and in MCl2-H4Hep-Na2H2ATP-H2O-NaCl (M = Ca2+ or Mg2+) solutions in the 0.15 M NaCl background were studied using computer simulation and pH titration at 2.3 ≤ pH ≤ 10.5. Formation constants were determined for two protonated ATP species, three protonated complex species of heparin with ATP of equimolar stoichiometry, and mixed-ligand calcium and magnesium complexes with heparin and adenosinetriphosphate. The formation constants for mixed-ligand calcium(II) complexes with heparin are more than two times those of homoligand calcium complexes with heparin. As a result, the Ca2+ ion concentration at 6.8 ≤ pH ≤ 7.4 (the pH range of blood plasma stability) decreases from 40 to 100 wt % depending on the ratio of the initial concentrations of CaCl2, H4Hep, and Na2H2ATP.  相似文献   

16.
Extracorporeal filter cartridges, filled with an activated carbon bead (ACB) adsorbent, have been used for removal of overdosed cancer drugs from the blood. Coatings on adsorbent matrices, poly(methyl methacrylate) (PMMA)/activated carbon bead and PMMA/chitosan/heparin/ACB composites, were tested to improve their biocompatibility and blood compatibility. PMMA coating on ACBs was accomplished in a straightforward manner using a PMMA solution in ethyl acetate. A one-step hybrid coating of ACBs with PMMA-anticoagulant heparin required the use of acetone and water co-solvents. Multilayer coatings with three components, PMMA, chitosan, and heparin, involved three steps: PMMA was first coated on ACBs; chitosan was then coated on the PMMA-coated surface; and finally, heparin was covalently attached to the chitosan coating. Surface morphologies were studied by scanning electron microscopy. X-ray photoelectron spectroscopy confirmed the -SO(3)(-) group. Adsorption, of a chemotherapy drug (doxorubicin) from both water and phosphate-buffered saline, by the coated ACBs was examined. The adsorption isotherm curves were fitted using the Freundlich model. The current adsorption system might find potential applications in the removal of high-dose regional chemotherapy drugs while maintaining high efficiency, biocompatibility, and blood compatibility.  相似文献   

17.
利用壳聚糖(CHI)溶液分散了纳米二氧化钛(nano-TiO2)和多壁碳纳米管(MWCNT),将该分散液修饰于玻碳电极表面形成纳米复合薄膜;用戊二醛为交联剂在该纳米复合层上固定了葡萄糖氧化酶(GOx),同时以二茂铁为电子媒介体构建了一种新型葡萄糖传感器。利用扫描电镜(SEM)、交流阻抗(AC)对所制备的传感器进行了表征,同时用循环伏安法(CV)和计时电流法(CA)考察了其对葡萄糖的电催化氧化性能。实验结果表明,在优化测试条件下该传感器对葡萄糖在0.5~20.0 mmol.L-1范围内有线性响应,检出限为0.2 mmol.L-1;电流达到95%的稳态时间小于5 s;此生物传感器具有良好的重现性和选择性,能有效排除抗坏血酸、尿酸等常见干扰物的影响并成功应用于饮料中葡萄糖含量的测定。  相似文献   

18.
Heparin (HEP) and periodate‐oxidized heparin (O‐HEP) nanotubes were prepared by combining the template method with a layer‐by‐layer (LbL) technique. The tubular structure was obtained and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM). O‐HEP is one of the HEP derivatives that contains anticoagulant activity and preserves its ability for other effects. Chitosan (CHI) and O‐HEP have been used to fabricate nanotubes by covalent cross‐linking Schiff base reactions. It is demonstrated that the obtained nanotubes have the significant feature of autofluorescence without the addition of any fluorescent dyes and they retain their anticoagulation activity. Compared with O‐HEP/CHI nanotubes, HEP/CHI nanotubes show high anticoagulation activity and do not have autofluorescence. Furthermore, this method could be extended to other copolysaccharide derivatives for the preparation of autofluorescent nanomaterials.  相似文献   

19.
Polyelectrolyte multilayer films adsorbed on gold surfaces were studied by combined ellipsometric and electrochemical methods. Multilayers were composed of “synthetic” (poly(4-styrenesulfonic acid) ammonium salt (PSS) and poly(allylamine hydrochloride) (PAH) (PSS/PAH)) and “semi-natural” (carboxymethyl cellulose (CMC) and chitosan (CHI) (CMC/CHI)) polyelectrolytes. It was found that only PSS/PAH Layer-by-Layer (LbL) assembled structures result in dense surface confined films that limit permeability of small molecules, such as ferri-/ferrocyanide. The PSS/PAH assemblies can be envisaged as films with pinholes, through which small molecules diffuse. During the LbL deposition process of these films a number of pinholes quickly decay. A representative pinhole diameter was found to be approximately 20 μm, which determines the diffusion of small molecules through LbL films, and yet remains constant when the film consists of a few LbL assembled polyelectrolyte bilayers. CMC/CHI LbL assemblies at gold electrode surfaces give very low density films, which do not limit the diffusion of ferri-/ferrocyanide between the surface of the electrode and the solution.  相似文献   

20.
The present investigation describes a novel method for preparing beads based on crosslinked chitosan with glutaraldehyde interpenetrating glycine polymer network. Four type of beads, viz., CHI1 (composed of chitosan, glycine and glutaraldehyde); CHI2 (composed of chitosan and glutaraldehyde); CHI3 (composed of chitosan and glycine) and CHI4 (only chitosan) were prepared and their release characteristics were studied using thyamine hydrochloride (Thy-HCl) as a model drug. Structural changes during swelling of CHI1 beads in solutions of different pH were studied using IR and UV spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号