首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
Chemical equilibria in dilute aqueous solutions containing high-molecular-weight heparin (Na4hep) and Glycine (HGly), as well as in solutions of the MCl2-Na4hep-HGly-H2O-NaCl system (M = Ca2+, Mg2+) against the background of 0.15 M NaCl at 37°C, have been studied by mathematical modeling of chemical equilibria on the basis of pH-metric titration data. The model of equilibria of the Na4hep-HGly-H2O-NaCl system for the range 2.30 ≤ pH ≤ 10.50 at different ratios of initial heparin and glycine concentrations showed that, in the pH range of blood plasma stability (pH 6.80–7.40), the protonated H H3hepGly34− species prevailed. This was supported by UV absorption spectra of heparin and glycine solutions in the presence of 0.15 M NaCl and absorbance dynamics for solutions containing heparin and glycine. The results of modeling equilibria in the five-component MCl2-Na4hep-HGly-H2O-NaCl systems (M = Ca2+, Mg2+) showed that the Ca2+ and Mg2+ ions form with heparin and glycine stable protonated mixed-ligand complexes M H3hepGly32−. The formation constants of these species are one order of magnitude higher than the formation constants of the homoligand calcium and magnesium with heparin. In the pH range 6.80–7.40, the calcium content decreases depending on the ratio of the initial concentrations of Na4hep, HGly, and CaCl2: at the 1 : 3 : 1 ratio, it decreases by a factor of 5.7 owing to the formation of the predominant species CaH3hepGly32−, and at equimolar amounts of the reagents (1 : 1 : 1), the calcium content decreases by a factor of 3.5 (the CaH3hepGly32− concentration is three time as low as the NaCahep concentration).  相似文献   

2.
The acid-base and complexing properties of Logiparin (a low-molecular-weight variety (LMH) of heparin (H4L) with magnesium and calcium ions were studied using mathematical modeling of chemical equilibria in aqueous solutions of Logiparin and its solutions with magnesium and calcium ions and pH titration. The heparin concentration was set equal to the concentration of its disaccharide units. The protonated heparin form HL3? and the most significant heparin complexes of Mg2+ and Ca2+ were identified; relevant formation constants were estimated. Comparative analysis of the results is carried out against available data on ion complexing with unfractionated (high-molecular-weight) heparin (HMH). The Logiparin complexes of calcium and magnesium ions are inferior to the HMH complexes in both their formation constants in solution and their effect on the decrease in the equilibrium concentration of free calcium ions, a participant of all blood coagulation processes. This distinction creates prerequisites for the lower blood-coagulating activity of Logiparin compared to that of HMH, which is for the first time confirmed in biological experiments with the in vitro administration of the same concentration of HMH or LMH into the blood plasma of laboratory rats.  相似文献   

3.
Chemical equilibria in the high-molecular-weight heparin (Na4hep)-arginine (HArg)-H2O-NaCl and MCl2-Na4hep-HArg-H2O-NaCl systems of electrolytes (M = Ca2+, Mg2+) were calculated by the method of mathematical simulation of chemical equilibria from representative planned pH-metric titration experiment at 2.30 ≤ pH ≤ 10.50 in a physiological solution medium in the presence of 0.154 M NaCl as a background electrolyte at 37°C. The initial concentrations of the basic components were n × 10−3 M (n ≤ 4).  相似文献   

4.
The acid-base properties of unfractionated heparin (H4L) and the complexation of biometal ions (Mg2+ and Ca2+) with heparin in aqueous solutions have been studied by pH titration, using mathematical modeling methods in data processing. The heparin concentration is taken to be equal to the concentration of heparin disaccharide units. The formation constants of the protonated heparin species HiL (i = 1, 2) have been estimated. The most abundant Mg2+-heparin and Ca2+-heparin complex species have been identified, and their formation constants have been estimated.  相似文献   

5.
The corroding process of six glasses of the Na2O-K2O-CaO-ZrO2-SiO2 system with ZrO2content 0–2.13 mass % by water was observed during static tests at 121°C and pressure of 0.25 MPa in steam sterilizer. Significant increase of Na+ and K+ content in leachates was observed after the addition of ZrO2 into glass. Further increase of the content of ZrO2 in glasses slowed down the rate of Na+ and K+ leaching. The leaching process of SiO2 as well as Na+, K+, and Ca2+ ions was evaluated on the basis of comparison with model leaching processes. Variation of the concentrations of Na+, K+, Ca2+, and SiO2 in leachates with time was described by empirical equation. Observed changes in the initial leaching rates of Na+, K+, Ca2+, and SiO2 can be ascribed to the content of ZrO2 in glasses. The presence of ZrO2 in glasses reduced the overall rate of glass dissolution.  相似文献   

6.
The behavior of potassium tetrachloropalladate(II) in media simulating biological liquids is studied. The rate of aquation in aqueous NaCl solutions is shown to be higher than the rate at which the Cl? ligand enters the inner coordination sphere of the Pd atom. In HCl solutions, the formation of the Pd chloro complexes predominates due to protonation of water molecules in the composition of aqua complexes. The reactions of replacement of the ligands (H2O molecules and H3O+ ion) in the planar Pd(II) complexes by the chloride ion are studied by the ZINDO/1 method. All the complexes containing H2O and H3O+ ligands, except for [Pd(H2O)4]2+, contain intramolecular hydrogen bonds. The ZINDO/1 and RHF/STO-6G(d) calculations revealed “nonclassic” symmetrical O? H?O hydrogen bond in the [[Pd(H2O)3(H3O)]3+ and trans-[Pd(H2O)2(H3O)Cl]2+ complexes. The replacement of the H3O+ ion by the Cl? ion at the first three steps is thermodynamically more advantageous than the displacement of water molecules from the metal coordination sphere. The logarithms of stepwise stability constants of Pd(II) chloro complexes are found to correlate linearly with the enthalpies (ZINDO/1, PM3) of reactions of H2O replacement by Cl?.  相似文献   

7.
Conductivity of perovskite phosphate–substituted solid solutions of Ba4Ca2Nb2 x P x O11 (0.0 ≤ x ≤ 0.5) was studied as a function of temperature, partial pressure of oxygen and water vapors. It is proved that the studied systems are protonic conductors at the temperatures below 600°C in the atmosphere with elevated content of water vapors (pH2O = 1.92 × 10–2 atm). Introduction of the tetrahedral [PO4] group in the complex oxide matrix of Ba4Ca2Nb2O11 results in an increase in the oxygen–ionic (dry air, pH2O = 1.91 × 10–4 atm) and protonic conductivities (wet air, pH2O = 1.92 × 10–2 atm). Is it found that the doping causes a considerable increase in chemical stability of phases with respect to carbon dioxide.  相似文献   

8.
Characteristic features of the structure of Ca2+ hydration shells were considered. The results of quantum chemical calculations were compared with experimental data obtained from the study of nuclear magnetic relaxation of deuterons in aqueous solutions of calcium salts. The influence of the basis set and computational procedure on the calculated 2D quadrupole couling constants (QCC) in isolated water molecule was investigated. The 2D QCC in molecular clusters (D2O)5 and Ca2+(D2O) n (n =6, 8, 10, 18) were calculated using the B3LYP/6-31++G** density functional method.  相似文献   

9.
Isothermal titration calorimetry has been used to determine the stoichiometry, formation constants and thermodynamic parameters (ΔG o, ΔH, ΔS) for the formation of the citrate complexes with the Mn2+, Co2+, Ni2+ and Zn2+ ions. The measurements were run in Cacodylate, Pipes and Mes buffer solutions with a pH of 6, at 298.15 K. A constant ionic strength of 100 mM was maintained with NaClO4. The influence of a metal ion on its interaction energy with the citrate ions and the stability of the resulting complexes have been discussed.  相似文献   

10.
The stoichiometry and stability constants of the complexes formed between [Pd(MAMP)(H2O)2]2+ and various biologically relevant ligands containing different functional groups were investigated. The ligands used are amino acids, peptides and DNA constituents. The results show the formation of 1:1 complexes with amino acids and peptides and the corresponding deprotonated amide species. Structural effects of peptides on amide deprotonation were investigated. The purine and pyrimidine bases uracil, uridine, cytosine, inosine, inosine 5′-monophosphate (5′-IMP) and thymine form 1:1 and 1:2 complexes. The concentration distribution of the various complex species was calculated as a function of pH. The effect of chloride ion concentration on the formation constant of CBDCA with Pd(MAMP)2+ was also reported. The results show ring opening of CBDCA and monodentate complexation of the DNA constituent with the formation of [Pd(MAMP)(CBDCA-O)DNA], where (CBDCA-O) represents cyclobutane dicarboxylate coordinated by one carboxylate oxygen. The equilibrium constant of the displacement reaction of coordinated inosine, as a typical DNA constituent, by SMC and/or methionine was calculated. The results are expected to contribute to the chemistry of antitumor agents. The calculated parameters of the optimized complexes support the measured formation constants.  相似文献   

11.
Complexes of copper(II) halides (chlorides and bromides) with some 4-azafluorene derivatives have been synthesized and studied by X-ray crystallography and IR and UV spectroscopy. In neutral media, Cu(L)2X2 (X = Cl, Br) complexes are formed in which the ligands are coordinated to the metal atoms though the lone pair of the endocyclic nitrogen atom and through the oxygen atoms of substituents. In acid media at pH 2, (HL2)2CuX4 complexes are formed in which the 4-azafluorene molecules protonated at the endocyclic nitrogen atom act as an outer-sphere cation. The molecule and crystal structure of 4-aza-9-oxofluorenium tetrabromocuprate hydrate (HL4)2CuBr4·H2O has been determined.  相似文献   

12.
Summary.  Calcium sulfate occurs in nature in form of three different minerals distinguished by the degree of hydration: gypsum (CaSO4·2H2O), hemihydrate (CaSO4·0.5H2O) and anhydrite (CaSO4). On the one hand the conversion of these phases into each other takes place in nature and on the other hand it represents the basis of gypsum-based building materials. The present paper reviews available phase diagram and crystallization kinetics information on the formation of calcium sulfate phases, including CaSO4-based double salts and solid solutions. Uncertainties in the solubility diagram CaSO4–H2O due to slow crystallization kinetics particularly of anhydrite cause uncertainties in the stable branch of crystallization. Despite several attempts to fix the transition temperatures of gypsum–anhydrite and gypsum–hemihydrate by especially designed experiments or thermodynamic data analysis, they still vary within a range from 42–60°C and 80–110°C. Electrolyte solutions decrease the transition temperatures in dependence on water activity. Dry or wet dehydration of gypsum yields hemihydrates (α-, β-) with different thermal and re-hydration behaviour, the reason of which is still unclear. However, crystal morphology has a strong influence. Gypsum forms solid solutions by incorporating the ions HPO4 2−, HAsO4 2−, SeO4 2−, CrO4 2−, as well as ion combinations Na+(H2PO4) and Ln3+(PO4)3−. The channel structure of calcium sulfate hemihydrate allows for more flexible ion substitutions. Its ion substituted phases and certain double salts of calcium sulfate seem to play an important role as intermediates in the conversion kinetics of gypsum into anhydrite or other anhydrous double salts in aqueous solutions. The same is true for the opposite process of anhydrite hydration to gypsum. Knowledge about stability ranges (temperature, composition) of double salts with alkaline and alkaline earth sulfates (esp. Na2SO4, K2SO4, MgSO4, SrSO4) under anhydrous and aqueous conditions is still very incomplete, despite some progress made for the systems Na2SO4–CaSO4 and K2SO4–CaSO4–H2O. Corresponding author. E-mail: daniela.freyer@chemie.tu-freiberg.de Received December 17, 2002; accepted January 10, 2003 Published online April 3, 2003  相似文献   

13.
Several transition metal (Cu2+, Fe3+, Zn2+, Mn4+, and Cr6+) salts of H4PMo11VO40 were prepared and their solutions were used initially for H2S removal in the liquid redox process. H2S removal tests were performed by dynamic absorption experiments. Among these polyoxometalates, that with the Cu2+ cation was found to have pronounced H2S removal performance with the removal efficiency of up to 98%. The relevant oxidative desulfurization mechanism and the role of Cu2+ were studied.  相似文献   

14.
Single-phase Ca3Al2O6 was prepared via polymeric precursor method. The influence of the reactants nature in the Ca3Al2O6 synthesis was investigated. For this purpose, citric acid and soluble salts of calcium (nitrate, chloride, carbonate) and aluminium (nitrate, chloride, acetate) were used as starting materials, in the presence and, respectively, in the absence of ethylene glycol. Ca3Al2O6 resulted as single-phase after annealing at 1050 °C for 1 h only starting from calcium nitrate or carbonate and aluminium nitrate or acetate as salts precursor for Ca2+ and Al3+ cations. The formation of Ca3Al2O6 is not conditioned by the ethylene glycol presence in these mixtures. Using calcium and aluminium chlorides, the phases present at 1050 °C are Ca12Al14O33 and unreacted CaO.  相似文献   

15.
The phase and chemical compositions of the precipitates formed in the LiVO3-VOSO4-H2O system at initial pH within 1 ≤ pH ≤ 4 and 90°C were studied. The following phases were prepared: an α phase Li1.4(VO)1.3[H2V10O28] · nH2O and a β phase Li0.6 ? x H1.4 + x [V12O31 ? y/2] · nH2O (0 ≤ x ≤ 0.5, 1.3 ≤ y ≤ 2.0) with a layered structure. Li0.4V2O5 · H2O nanorods with the interlayer distance 10.30 ± 0.08 Å were synthesized at 180°C in an autoclave. The morphology, IR spectra, and main formation processes for these polyvanadates were studied.  相似文献   

16.
The imidazol side group of histidine has two nitrogen atoms capable of being protonated or participating in metal binding. Hence, histidine can take on various metal-bound and protonated forms in proteins. Because of its variable structural state, histidine often functions as a key amino acid residue in enzymatic reactions. Ab initio (HF and MP2) calculations were done in modeling the cation (H+, Li+, Na+, K+, Mg2+, Ca2+) interaction with side chain of histidine. The region selectivity of metal ion complexation is controlled by the affinity of the side of attack. In the imidazol unite of histidine the ring nitrogen has much higher metal ion (as well as proton) affinity. The complexation energies with the model systems decrease in the following order: Mg2+ > Ca2+ > Li+ > Na+ > K+. The variation of the bond lengths and the extent of charge transfer upon complexation correlate well with the computed interaction energies.  相似文献   

17.
On the basis of consideration of hydration, hydrolysis, dissociation, polymerization, and ligand exchange that occur in aqueous solutions of U(VI) complexes, a new approach to the assignment of absorption bands of the ligands in electronic spectra of uranium(VI) carbonate complexes in the range 190–400 nm has been suggested. For the Na4[UO2(CO3)3] complex, the following assignment of absorption bands has been made: Na3[UO2(CO3)3], 258 nm; Na2[UO2(CO3)3]2–, 300 nm; and Na4[UO2(CO3)3], 330 nm.  相似文献   

18.
The subsolidus phase composition of the M2O-CdO-V2O5 systems with M = Li or Na is studied. Double orthovanadates MCdVO4 and MCd4(VO4)3 form solid solutions of composition Li1 ? 2x/3Cd x/3CdVO4 (0 ≤ x ≤ 1, orthorhombic space group Cmcm, modulation at x = 0.6) and Na3 ? 2x Cd3 + x (VO4)3 (0 ≤ x ≤ 0.10 and 0.30 ≤ x ≤ 1, orthorhombic space group Cmcm and Pn21 a or Pnma, respectively). In the range 0.10 < x < 0.30, the end-members of the solid solutions coexist. Isothermal sections of the systems are mapped.  相似文献   

19.
Chemical equilibria in the heterogeneous system Tb(NO3)3-H2O, physiological saline solutions containing terbium nitrate, and unfractionated heparin ((H4L) Tb(NO3)3-H4L-H2O-NaCl), and solutions containing calcium chloride, terbium nitrate, and unfractionated heparin (CaCl2-Tb(NO3)3-H4L-H2O-NaCl) were studied by mathematical modeling and pH titration. A physicochemical model was designed for two-phase equilibria in the system Tb(NO3)3-H2O, which consists of an aqueous solution and a solid phase of precipitated terbium hydroxide. Formation constants were calculated for terbium hydroxide ions Tb(OH) i (3?i)+ (i = 1, 2, 3) in an aqueous phase, and a correlation was found between the amount of precipitated Tb(OH) 3 i and pH. The four-component solution Tb(NO3)3-H4L-H2O-NaCl in the range 2.3 ≤ pH ≤ 10.4 is homogeneous; as a result of its investigation, the formation constants were ascertained for significant terbium complexes with heparin: TbL, TbHL 2 4 , and Tb(OH)2L3?. Chemical equilibria in the five-component solution CaCl2-Tb(NO3)3-H4L-H2O-NaCl were modeled proceeding from the models developed for equilibria in the four-component solution subsystems Tb(NO3)3-H4L-H2O-NaCl and CaCl2-H4L-H2O-NaCl. The modeling showed that the Tb3+ ion is an efficient competitive complex former to the Ca2+ ion, which forms complexes with heparin, and decreases tenfold the concentration of the major complex NaCaL at 6.8 ≤ pH ≤ 7.4 (the pH range of blood plasma stability).  相似文献   

20.
The equilibrium constants and thermodynamic parameters for complex formation of 18-Crown-6 (18C6) with Tl+, Pb2+, Hg2+, and Zn2+ metal cations have been determined by conductivity measurements in methanol (MeOH)-water (H2O) binary solutions. 18-Crown-6 forms 1:1 complexes with Hg2+ and Zn2+ cations, but in the case of Tl+ and Pb2+ cations, in addition to 1:1 stoichiometry, 1:2 (ML2) complexes are formed in some binary solvents. The thermodynamic parameters (ΔH c0 and ΔS c0), which were obtained from the temperature dependences of equilibrium constants, show that in most cases the complexes are enthalpy destabilized but entropy stabilized. Non-linear behavior is observed between the equilibrium constants (log K f ) of complexes and the composition of the mixed solvent. The selectivity of the ligand for these metal cations is sensitive to the solvent composition, and, in some cases, the selectivity order is reversed in certain compositions of the mixed solvent. The results also show that the mechanism of complexation reactions and the stoichiometry of complexes of some metal cations change with the nature and even with the composition of the mixed solvent. The article was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号