首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
秦邦  赵玉宝  李辉  邱亮  樊造 《催化学报》2015,(8):1321-1325
Cr(VI)具有高毒性和强诱变致癌性,且能稳定存在于自然界中,对人类和自然环境危害极大.而容易沉淀和吸附在固体上的Cr(III)毒性较小,约为Cr(VI)的千分之一.因此,将Cr(VI)还原为Cr(III)是处理含铬废水的有效途径.光催化还原是一种环境友好的新型技术,基于可见光的催化还原处理含Cr(VI)废水能够在常温常压下进行,具有经济、高效、清洁和无二次污染等特点而受到广泛关注.采用适宜的晶面生长控制剂,调变不同晶面的相对生长速率,可制得暴露不同晶面、具有多种形貌的Cu2O.将这些具有不同晶面的Cu2O用于光催化氧化降解有机污染物的研究表明, Cu2O的光催化氧化性能与其所暴露的晶面密切相关,其表面残留的用作晶面生长控制剂的表面活性剂对其催化性能有重要影响.相对而言,将Cu2O用于光催化还原Cr(VI)的研究较少,关于晶面导向剂油酸对其光催化还原Cr(VI)性能的影响尚未见报道.
  本文采用液相法,首先合成了仅暴露Cu2O{100}晶面的立方体(Cub),进而通过控制晶面导向剂油酸的用量,制得仅外露Cu2O{111}晶面的八面体(OctO)和仅暴露Cu2O{110}晶面的十二面体(RhdO),继而再将OctO和RhdO在C3H6-O2等混合气中于215 oC处理30 min,通过此温和氧化除去表面油酸,获得了具有洁净表面的八面体(Oct)和十二面体(Rhd)的Cu2O.采用X射线衍射(XRD)、扫描电镜(SEM)和傅里叶变换红外光谱(FT-IR)等技术对其物性特征进行了表征.在LED可见光辐照下,对比评价了具有不同晶面的Cu2O光催化还原Cr(VI)的性能,研究了暴露晶面及晶面导向剂油酸等对Cu2O光催化还原Cr(VI)的影响.
  XRD研究表明,采用液相法及温和氧化处理可制得纯相的Cu2O,其XRD图中无Cu及CuO等杂峰出现. SEM观测结果表明,所得Cu2O样品形貌均一性较好,采用丙烯选择氧化去除表面油酸后, Cu2O的形貌无明显改变,仅其外表面略有粗化. FT-IR分析进一步说明,去除表面油酸后,其物相仍为Cu2O,没有出现CuO的红外特征吸收.
  动力学研究结果显示, Cu2O光催化还原Cr(VI)具有准一级反应动力学特征,晶面导向剂油酸的存在能够在一定程度上减缓光腐蚀和酸腐蚀,有助于较长时间内保持Cu2O光催化还原活性,而对Cu2O光催化速率没有影响.以单位比表面积速率常数为比活性指标,不同晶面Cu2O光催化还原Cr(VI)的活性次序为{111}>{110}>{100}. Cu2O不同晶面的原子配位情况差异明显,且{100}晶面的表面能较低,由此可较好解释具有不同晶面Cu2O光催化还原Cr(VI)活性的不同.八面体Cu2O的{111}面上同时存在配位饱和与配位不饱和Cu,而菱形十二面体Cu2O的{110}面上只有配位饱和Cu,立方体Cu2O的{100}面上只有配位不饱和O.相对于Cu2O的{100}晶面,具有更高表面自由能的{111}和{110}晶面易于产生光生电子-空穴对,从而表现出较{100}晶面更高的光催化活性.而Cu2O{111}晶面表现出更高光催化活性的原因可能是: Cu2O{111}晶面上存在的不饱和Cu可作为活性位点,在某种程度上有利于光生电子-空穴对分离,减少光生电子-空穴对复合,从而提高光催化还原速率.  相似文献   

2.
光催化反应发生在半导体材料的表面,材料表面的原子/电子结构直接影响光催化剂的活性或选择性.因此,发展具有特定晶面的半导体光催化剂受到各国学者的普遍关注,被认为是调控光催化材料性能的有效途径之一.自2008年yang等首次合成高表面能{001}晶面占优的锐钛矿Ti O2单晶以来,控制合成暴露不同晶面Ti O2晶体的研究得到了迅猛的发展,已发展了多种方法合成了具有不同晶面的Ti O2晶体.研究表明,选择性地暴露特定的活性晶面能够显著地提高光催化剂的活性或者改变光催化反应的选择性.但是,含有完整晶面构型的Ti O2单晶样品的颗粒尺寸一般都较大,通常为几微米,因而显著增加了光生载流子传输与分离的难度,并且导致材料较小的比表面积,限制了对光催化活性的进一步提高.能否在合成含特定晶面单晶的同时增加多孔结构成为有效解决这一问题的关键.最近,Crossland等采用晶种模板法成功合成了介孔的锐钛矿Ti O2单晶,并且通过光电器件研究证实了采用该思路可进一步提高材料的光电性能.金红石Ti O2在光催化全分解水方面具有独特的优势,然而关于多孔单晶金红石Ti O2的研究相对较少,尤其是合成热力学不稳定的高表面能{111}晶面完全暴露的多孔金红石单晶面临较大的技术挑战因而一直未见文献报道.本文利用晶种模板法,以Ti Cl4溶液为含Ti前驱体、Na F为形貌控制剂、采用水热处理制备出不同比例{111}晶面的介孔金红石单晶.我们前期工作表明,Na F可作为形貌控制剂合成低表面能{110)晶面占优的介孔金红石单晶.本文发现,通过改变Na F的添加量,可有效调变{111}/{110}晶面比例,最终合成完全暴露{111}高表面能的介孔金红石Ti O2单晶.扫描电镜结果显示,当添加20 mg NaF时,合成{110}占优的具有高长径比的介孔晶体;当Na F用量增加到40 mg时{110}晶面进一步缩短;至80 mg时则制备出{111})高能面完全暴露的金红石Ti O2晶体.值得注意的是,对比研究表明,不采用模板合成了与多孔晶体完全相对应的不同{111}/(110}晶面比例的实心金红石晶体.透射电镜及选区电子衍射以及结合X射线衍射进一步证实,多孔的金红石Ti O2晶体与实心金红石单晶均都为单晶结构,孔结构贯穿于样品内部且具有较高的晶面结晶性.氮气吸附实验发现,虽然三个不同晶面比例介孔金红石单晶样品间的形貌具有显著的差异,但比表面积非常相近(分别为24,25,28 m2/g),孔径也都为50 nm左右,该值与所用SiO 2模板球的直径以及TEM观察结果相一致.光催化产氢性能结果表明,选择性的暴露活性晶面显著提高了光催化活性,仅含高能面{111}的介孔金红石单晶样品具有最高的产氢速率(约800μmol h–1 g–1),比常规{110}晶面占优的介孔单晶样品速率提高了约一倍.尤其比实心单晶样品的产氢速率提高了至少一个数量级,这应归结于介孔结构特性所导致的表面反应活性位增加、电子传输距离缩短以及光吸收增强协同作用的结果.  相似文献   

3.
光催化反应发生在半导体材料的表面,材料表面的原子/电子结构直接影响光催化剂的活性或选择性。因此,发展具有特定晶面的半导体光催化剂受到各国学者的普遍关注,被认为是调控光催化材料性能的有效途径之一。自2008年yang等首次合成高表面能{001}晶面占优的锐钛矿TiO2单晶以来,控制合成暴露不同晶面TiO2晶体的研究得到了迅猛的发展,已发展了多种方法合成了具有不同晶面的TiO2晶体。研究表明,选择性地暴露特定的活性晶面能够显著地提高光催化剂的活性或者改变光催化反应的选择性。但是,含有完整晶面构型的TiO2单晶样品的颗粒尺寸一般都较大,通常为几微米,因而显著增加了光生载流子传输与分离的难度,并且导致材料较小的比表面积,限制了对光催化活性的进一步提高。能否在合成含特定晶面单晶的同时增加多孔结构成为有效解决这一问题的关键。最近, Crossland等采用晶种模板法成功合成了介孔的锐钛矿TiO2单晶,并且通过光电器件研究证实了采用该思路可进一步提高材料的光电性能。金红石TiO2在光催化全分解水方面具有独特的优势,然而关于多孔单晶金红石TiO2的研究相对较少,尤其是合成热力学不稳定的高表面能{111}晶面完全暴露的多孔金红石单晶面临较大的技术挑战因而一直未见文献报道。本文利用晶种模板法,以TiCl4溶液为含Ti前驱体、NaF为形貌控制剂、采用水热处理制备出不同比例{111}晶面的介孔金红石单晶。我们前期工作表明, NaF可作为形貌控制剂合成低表面能{110)晶面占优的介孔金红石单晶。本文发现,通过改变NaF的添加量,可有效调变{111}/{110}晶面比例,最终合成完全暴露{111}高表面能的介孔金红石TiO2单晶。扫描电镜结果显示,当添加20 mg NaF时,合成{110}占优的具有高长径比的介孔晶体;当NaF用量增加到40 mg时{110}晶面进一步缩短;至80 mg时则制备出{111})高能面完全暴露的金红石TiO2晶体。值得注意的是,对比研究表明,不采用模板合成了与多孔晶体完全相对应的不同{111}/(110}晶面比例的实心金红石晶体。透射电镜及选区电子衍射以及结合X射线衍射进一步证实,多孔的金红石TiO2晶体与实心金红石单晶均都为单晶结构,孔结构贯穿于样品内部且具有较高的晶面结晶性。氮气吸附实验发现,虽然三个不同晶面比例介孔金红石单晶样品间的形貌具有显著的差异,但比表面积非常相近(分别为24,25,28 m2/g),孔径也都为50 nm左右,该值与所用SiO2模板球的直径以及TEM观察结果相一致。光催化产氢性能结果表明,选择性的暴露活性晶面显著提高了光催化活性,仅含高能面{111}的介孔金红石单晶样品具有最高的产氢速率(约800μmol h–1 g–1),比常规{110}晶面占优的介孔单晶样品速率提高了约一倍。尤其比实心单晶样品的产氢速率提高了至少一个数量级,这应归结于介孔结构特性所导致的表面反应活性位增加、电子传输距离缩短以及光吸收增强协同作用的结果。  相似文献   

4.
以乙酸锌和氧化镓为反应原料,以乙二胺四乙酸(EDTA)为配位剂,采用溶胶-凝胶法制备了八面体结构的ZnGa2O4微晶。通过TG-DSC,XRD、SEM等分析方法对ZnGa2O4微晶进行了测试和表征。研究了其物相组成、显微结构、形成机理及光催化性能。结果表明,在700℃、4~6 h时可以成功制备出八面体结构的ZnGa2O4单晶,其暴露的晶面族{111};八面体结构ZnGa2O4的合成是一个受ZnO的产生速率所控制的过程;光催化降解罗丹明B的实验表明,八面体结构ZnGa2O4微晶有着较好的光催化性能。  相似文献   

5.
二氧化铈(CeO2)因其具有较强的储放氧能力,被用作氧化还原反应的催化材料.自2005年,研究者制备出形貌可控的CeO2纳米棒、纳米立方块和纳米多面体,在CeO2形貌控制及构效关系研究方面取得长足发展.各种结构表征手段包括原位拉曼(in situ Raman)、原位傅里叶变换红外光谱(in situ DRIFTS)、核磁共振(NMR)和电镜等被用来研究不同形貌CeO2的表面结构和在催化反应中的活性差异.一般的活性规律为CeO2纳米棒({110}/{100})>纳米立方块({100})>纳米多面体({111}/{100}).近年来,负载型CeO2催化剂因其能稳定分散金属,通过金属-载体相互作用调控界面电子结构并表现出优异的催化活性而引起广泛关注,其中晶面效应在负载型CeO2催化体系中显得较为复杂.铜铈催化剂被认为是非常经济有效的CO氧化催化剂,然而由于制备和测试条件差异导致的CeO2晶面对铜铈催化剂催化CO氧化活性的影响规律并不统一.我们之前的研究工作发现纳米棒CeO2-{110}晶面上的Cu-[Ox]-Ce结构不利于形成Cu((40)),而纳米颗粒CeO2-{111}晶面上的CuOx团簇很容易形成Cu((40)),从而对CO催化氧化极为有利,这与纯载体CeO2的规律并不一致.与此同时,对于铜负载的CeO2纳米棒(NR)及纳米立方体(NC)所体现的性质及活性差异缺少系统深入的研究.在上述工作基础上,我们采用沉积沉淀法在CeO2 NR及CeO2 NC上负载1%wt的铜分别得到1Cu CeNR和1Cu CeNC,并对所合成催化剂的结构和吸附性能进行了表征.高分辨透射电镜(HRTEM)照片显示,CeO2纳米棒主要暴露{110}晶面,而CeO2纳米立方体以{100}晶面为主.催化测试结果表明,1Cu CeNC在130℃时CO已完全转化为CO2,而相同温度下1Cu Ce NR只有50%转化.进一步通过氢气程序升温还原(H2-TPR)和一氧化碳程序升温脱附(CO-TPD)分析发现, 1Cu Ce NC催化剂具有较强的还原性且表面氧物种含量高.此外, X射线光电子能谱(XPS)和in situ DRIFTS研究表明, 1Cu Ce NC促进Cu((40))位点生成,导致活性Cu((40))-CO物种增多,这些优异的化学性质导致其具有较高的催化CO氧化活性.  相似文献   

6.
CuO_x/CeO_2催化剂在CO氧化反应中表现出高催化活性和显著结构敏感性.文献报道中CuO_x/CeO_2催化剂体系的合成条件差异较大,从而导致观察到的CuO_x-CeO_2相互作用存在较大争议.因此,系统研究并阐明CuO_x/CeO_2催化剂中CuO_x-CeO_2相互作用对于理解复杂的CuO_x-CeO_2界面催化作用具有重要的研究意义.近期发现,氧化物纳米晶的形貌可作为一种新的结构参数,在不改变氧化物催化剂组成的条件下实现其结构和性能的调控.本文以不同形貌CeO_2纳米晶为载体,包括优先暴露{110}+{100}晶面的CeO_2纳米棒、优先暴露{100}晶面的CeO_2纳米立方体和优先暴露{111}晶面的CeO_2纳米多面体,采用等体积浸渍方法合成了Cu担载量为0.025%~5%的CuO_x/CeO_2纳米晶催化剂,结合谱学和电镜表征方法,以及CO吸附原位红外光谱,系统研究了CuO_x物种在不同形貌CeO_2纳米晶上的结构演化及其催化CO氧化的构-效关系.结构表征结果表明, CuO_x物种结构不仅依赖于Cu的担载量,也依赖于载体CeO_2的形貌.随着Cu担载量的增加, CuO_x物种优先沉积在CeO_2的表面缺陷位,然后聚集和长大;同时伴随着CuO_x物种从孤立Cu离子到与载体强/弱相互作用的CuO_x团簇,高分散Cu O颗粒和大尺寸Cu O颗粒.孤立Cu+离子和与载体弱相互作用CuO_x团簇主要形成于CeO_2纳米立方体的表面,这可能与CeO_2纳米立方体暴露的氧终止CeO_2{100}晶面相关.CO吸附原位红外结果表明, CuO_x团簇与不同CeO_2表面相互作用的强度顺序为:CeO_2纳米棒暴露的{110}面CeO_2纳米多面体暴露的{111}面CeO_2纳米立方体暴露的{100}面.CeO_2纳米立方体与Cu2+离子间相互作用弱于与Cu+之间的,因此CeO_2纳米立方体负载的CuO_x物种在CO还原过程中容易停留在稳定的Cu+中间物种;而CeO_2纳米棒与Cu2+离子之间的相互作用强于与Cu+之间的相互作用,因此CeO_2纳米棒负载的CuO_x物种在CO还原过程中容易形成金属铜.因此CO吸附原位红外光谱观察到CeO_2纳米立方体负载CuO_x催化剂中吸附在Cu+的CO物种远远多于CeO_2纳米棒负载CuO_x催化剂.CO氧化反应结果表明, CuO_x/CeO_2催化剂表现出同时依赖于CuO_x物种结构和CeO_2形貌的结构敏感性.CuO_x/CeO_2催化剂活性表现出与CuO_x/CeO_2催化剂的CO还原性能的正相关性,说明中CuO_x/CeO_2催化CO氧化反应遵循Mv K反应机理.这些结果系统地关联了CeO_2形貌, CuO_x-CeO_2相互作用, CuO_x物种结构和CeO_2还原性能, CuO_x/CeO_2催化CO氧化反应活性.  相似文献   

7.
二氧化铈(CeO_2)因其具有较强的储放氧能力,被用作氧化还原反应的催化材料.自2005年,研究者制备出形貌可控的CeO_2纳米棒、纳米立方块和纳米多面体,在CeO_2形貌控制及构效关系研究方面取得长足发展.各种结构表征手段包括原位拉曼(in situ Raman)、原位傅里叶变换红外光谱(in situ DRIFTS)、核磁共振(NMR)和电镜等被用来研究不同形貌CeO_2的表面结构和在催化反应中的活性差异.一般的活性规律为CeO_2纳米棒({110}/{100})纳米立方块({100})纳米多面体({111}/{100}).近年来,负载型CeO_2催化剂因其能稳定分散金属,通过金属-载体相互作用调控界面电子结构并表现出优异的催化活性而引起广泛关注,其中晶面效应在负载型CeO_2催化体系中显得较为复杂.铜铈催化剂被认为是非常经济有效的CO氧化催化剂,然而由于制备和测试条件差异导致的CeO_2晶面对铜铈催化剂催化CO氧化活性的影响规律并不统一.我们之前的研究工作发现纳米棒CeO_2-{110}晶面上的Cu-[O_x]-Ce结构不利于形成Cu((40)),而纳米颗粒CeO_2-{111}晶面上的CuO_x团簇很容易形成Cu((40)),从而对CO催化氧化极为有利,这与纯载体CeO_2的规律并不一致.与此同时,对于铜负载的CeO_2纳米棒(NR)及纳米立方体(NC)所体现的性质及活性差异缺少系统深入的研究.在上述工作基础上,我们采用沉积沉淀法在CeO_2 NR及CeO_2 NC上负载1%wt的铜分别得到1Cu CeNR和1Cu CeNC,并对所合成催化剂的结构和吸附性能进行了表征.高分辨透射电镜(HRTEM)照片显示,CeO_2纳米棒主要暴露{110}晶面,而CeO_2纳米立方体以{100}晶面为主.催化测试结果表明,1Cu CeNC在130°C时CO已完全转化为CO2,而相同温度下1Cu Ce NR只有50%转化.进一步通过氢气程序升温还原(H2-TPR)和一氧化碳程序升温脱附(CO-TPD)分析发现, 1Cu Ce NC催化剂具有较强的还原性且表面氧物种含量高.此外, X射线光电子能谱(XPS)和in situ DRIFTS研究表明, 1Cu Ce NC促进Cu((40))位点生成,导致活性Cu((40))-CO物种增多,这些优异的化学性质导致其具有较高的催化CO氧化活性.  相似文献   

8.
通过水热法合成了两种具有不同形貌的α-Fe2O3纳米棒和纳米立方体,并探索了它们的中温NH3选择性催化还原(NH3-SCR)NO的活性.NH3-SCR测试表明α-Fe2O3纳米棒具有更高的催化活性.X射线粉末衍射(XRD)、场发射扫描电镜(FE-SEM)和高分辨透射电镜(HRTEM)结构分析表明:α-Fe2O3纳米棒暴露有高表面能的{110}活性面,而纳米立方体暴露的主要是低表面能的{012}晶面.H2程序升温还原(H2-TPR)和NO程序升温脱附(NO-TPD)结果证明纳米棒比纳米立方体具有更高的氧化还原性能.因此,α-Fe2O3纳米棒由于暴露高表面能的活性面具有比纳米立方体更高的NH3-SCR性能.  相似文献   

9.
CuOx/CeO2催化剂在CO氧化反应中表现出高催化活性和显著结构敏感性.文献报道中CuOx/CeO2催化剂体系的合成条件差异较大,从而导致观察到的CuOx-CeO2相互作用存在较大争议.因此,系统研究并阐明CuOx/CeO2催化剂中CuOx-CeO2相互作用对于理解复杂的CuOx-CeO2界面催化作用具有重要的研究意义.近期发现,氧化物纳米晶的形貌可作为一种新的结构参数,在不改变氧化物催化剂组成的条件下实现其结构和性能的调控.本文以不同形貌CeO2纳米晶为载体,包括优先暴露{110}+{100}晶面的CeO2纳米棒、优先暴露{100}晶面的CeO2纳米立方体和优先暴露{111}晶面的CeO2纳米多面体,采用等体积浸渍方法合成了Cu担载量为0.025%~5%的CuOx/CeO2纳米晶催化剂,结合谱学和电镜表征方法,以及CO吸附原位红外光谱,系统研究了CuOx物种在不同形貌CeO2纳米晶上的结构演化及其催化CO氧化的构-效关系.结构表征结果表明, CuOx物种结构不仅依赖于Cu的担载量,也依赖于载体CeO2的形貌.随着Cu担载量的增加, CuOx物种优先沉积在CeO2的表面缺陷位,然后聚集和长大;同时伴随着CuOx物种从孤立Cu离子到与载体强/弱相互作用的CuOx团簇,高分散Cu O颗粒和大尺寸Cu O颗粒.孤立Cu^+离子和与载体弱相互作用CuOx团簇主要形成于CeO2纳米立方体的表面,这可能与CeO2纳米立方体暴露的氧终止CeO2{100}晶面相关.CO吸附原位红外结果表明, CuOx团簇与不同CeO2表面相互作用的强度顺序为:CeO2纳米棒暴露的{110}面>CeO2纳米多面体暴露的{111}面>CeO2纳米立方体暴露的{100}面.CeO2纳米立方体与Cu2+离子间相互作用弱于与Cu^+之间的,因此CeO2纳米立方体负载的CuOx物种在CO还原过程中容易停留在稳定的Cu^+中间物种;而CeO2纳米棒与Cu2+离子之间的相互作用强于与Cu^+之间的相互作用,因此CeO2纳米棒负载的CuOx物种在CO还原过程中容易形成金属铜.因此CO吸附原位红外光谱观察到CeO2纳米立方体负载CuOx催化剂中吸附在Cu^+的CO物种远远多于CeO2纳米棒负载CuOx催化剂.CO氧化反应结果表明, CuOx/CeO2催化剂表现出同时依赖于CuOx物种结构和CeO2形貌的结构敏感性.CuOx/CeO2催化剂活性表现出与CuOx/CeO2催化剂的CO还原性能的正相关性,说明中CuOx/CeO2催化CO氧化反应遵循Mv K反应机理.这些结果系统地关联了CeO2形貌, CuOx-CeO2相互作用, CuOx物种结构和CeO2还原性能, CuOx/CeO2催化CO氧化反应活性.  相似文献   

10.
纳米催化材料的性能主要由粒子尺寸、形貌和界面决定,即活性位点的电子及几何结构.尺寸、形貌可控的纳米催化材料的合成及其反应性能的研究,即催化剂的构效关系,一直是催化领域的研究热点.氧化物负载的金属催化剂广泛应用于多相催化反应过程.基于氧化铈优异的氧化还原性能, Cu/CeO_2催化剂在CO氧化、N_2O消除、水气变换、甲醇合成等反应中表现出优异性能.其中,通过铜物种与氧化铈表面化学键合形成的金属-载体界面通常被认为是催化活性中心.铜物种和氧化铈的相互作用主要体现在氧化铈固定铜物种,而铜物种促进氧化铈的氧化还原能力,涉及Cu~(2+)/Cu~+/Cu~0和Ce~(3+)/Ce~(4+)之间电子的传输和转移.Cu/CeO_2催化剂活性位的原子结构与金属-载体相互作用程度密切相关.氧化铈形貌和铜负载量是决定界面电子和几何结构的重要因素.常见的纳米氧化铈形貌包括纳米粒子(多面体)、纳米棒和纳米立方体,可分别选择性暴露(111)、(110)和(100)晶面;这些晶面上原子配位环境和化学性能决定了铜-氧化铈的键合方式和界面结构.与暴露{100}晶面的纳米立方体相比,主要暴露{100}/{110}镜面的氧化铈纳米棒、暴露{111}/{100}晶面的纳米粒子与铜物种具有更强的金属-载体相互作用程度,也更有利于铜物种的分散.铜的负载量也显著影响铜物种在特定氧化铈表面的分散度和化学状态;随着铜负载量的增加,可在氧化铈表面形成层状铜、铜团簇和铜纳米粒子.通常情况下,低负载量有利于单层、双层铜物种的形成,高负载量时则出现多层铜和铜纳米粒子.催化活性位通常是由铜原子与氧化铈上的氧空穴相互作用产生,与氧化铈表面氧空穴的数量和密度密切相关,即氧化铈形貌.本文总结了Cu/CeO_2催化剂的研究进展,讨论了氧化铈形貌和铜负载量对铜物种分散度和化学状态的影响规律,总结了铜氧化铈界面结构的多维度表征结果,比较了Cu/CeO_2催化剂在CO氧化、水气变换及甲醇合成中的活性位结构和反应机制.  相似文献   

11.
纳米催化材料的性能主要由粒子尺寸、形貌和界面决定,即活性位点的电子及几何结构.尺寸、形貌可控的纳米催化材料的合成及其反应性能的研究,即催化剂的构效关系,一直是催化领域的研究热点.氧化物负载的金属催化剂广泛应用于多相催化反应过程.基于氧化铈优异的氧化还原性能, Cu/CeO2催化剂在CO氧化、N2O消除、水气变换、甲醇合成等反应中表现出优异性能.其中,通过铜物种与氧化铈表面化学键合形成的金属-载体界面通常被认为是催化活性中心.铜物种和氧化铈的相互作用主要体现在氧化铈固定铜物种,而铜物种促进氧化铈的氧化还原能力,涉及Cu^2+/Cu^+/Cu^0和Ce^3+/Ce^4+之间电子的传输和转移.Cu/CeO2催化剂活性位的原子结构与金属-载体相互作用程度密切相关.氧化铈形貌和铜负载量是决定界面电子和几何结构的重要因素.常见的纳米氧化铈形貌包括纳米粒子(多面体)、纳米棒和纳米立方体,可分别选择性暴露(111)、(110)和(100)晶面;这些晶面上原子配位环境和化学性能决定了铜-氧化铈的键合方式和界面结构.与暴露{100}晶面的纳米立方体相比,主要暴露{100}/{110}镜面的氧化铈纳米棒、暴露{111}/{100}晶面的纳米粒子与铜物种具有更强的金属-载体相互作用程度,也更有利于铜物种的分散.铜的负载量也显著影响铜物种在特定氧化铈表面的分散度和化学状态;随着铜负载量的增加,可在氧化铈表面形成层状铜、铜团簇和铜纳米粒子.通常情况下,低负载量有利于单层、双层铜物种的形成,高负载量时则出现多层铜和铜纳米粒子.催化活性位通常是由铜原子与氧化铈上的氧空穴相互作用产生,与氧化铈表面氧空穴的数量和密度密切相关,即氧化铈形貌.本文总结了Cu/CeO2催化剂的研究进展,讨论了氧化铈形貌和铜负载量对铜物种分散度和化学状态的影响规律,总结了铜氧化铈界面结构的多维度表征结果,比较了Cu/CeO2催化剂在CO氧化、水气变换及甲醇合成中的活性位结构和反应机制.  相似文献   

12.
以钛酸丁酯为钛源,氢氟酸为氟源,采用溶剂热法制备了一系列钛基半导体纳米晶,考察了氢氟酸加入量对纳米晶结构演变的影响,并通过光催化产氢、光降解罗丹明B及瞬态光电流响应测试了所得纳米晶的光催化性能。当不加氢氟酸时,所得纳米晶为TiO_2纳米颗粒,主要暴露{101}面。加入少量氢氟酸时,所得纳米晶为主要暴露{001}面的TiO_2纳米片,这是由于氟离子吸附于纳米晶表面,降低{001}面表面能所致。由于{001}面与{101}面间的晶面异质结促进了载流子分离,该样品表现出了最高的光催化性能。继续增加氢氟酸加入量,氟离子开始进入晶格构成新晶相,所得纳米晶的表面与体相均形成TiO_2与TiOF_2混合相,形貌呈现片层堆叠结构,光催化性能下降。当进一步增加氢氟酸加入量后,氟离子全部进入晶格形成大颗粒(NH_4)_(0.3)TiO_(1.1)F_(2.1)。因其具有不适宜光催化反应的能带结构,该物质表现出了较差的光催化活性,但其可作为制备氮、氟掺杂钛基半导体材料的前驱体使用。  相似文献   

13.
锐钛矿(001)与(101)晶面在光催化反应中的作用   总被引:1,自引:0,他引:1  
采用水热法制备了(001)和(101)晶面暴露的单晶锐钛矿TiO2颗粒. 利用光还原沉积贵金属(Au, Ag, Pt)和光氧化沉积金属氧化物(PbO2, MnOx)的方法研究了暴露的锐钛矿(001)和(101)晶面在光催化中的作用. 通过透射电子显微镜(TEM)、扫描电子显微镜(STM)、能量色散X射线光谱仪(EDX)和X射线光电子能谱(XPS)的表征, 发现发生光还原反应生成的贵金属粒子主要沉积在暴露的锐钛矿(101)晶面上, 而发生光氧化反应产生的金属氧化物颗粒主要沉积在暴露的锐钛矿(001)晶面上. 此结果表明光激发产生的电子与空穴主要并分别分布在单晶锐钛矿TiO2的(101)与(001)晶面上, 并在其上参与光催化还原反应和氧化反应. 同时也表明暴露的不同晶面对光生电荷具有分离效应. 基于本研究可以认为同时暴露分别进行氧化和还原反应的晶面可以有效促进光催化反应.  相似文献   

14.
采用煅烧的硫酸盐掺杂的含钛高炉渣(sulfate-modified titanium-bearing blast furnace slag,STBBFS)作为光催化剂,研究了Cr(VI)-柠檬酸[Cr(VI)-CA]复合体系和Cr(VI)-柠檬酸-硝酸铁[Cr(VI)-CA-FN]复合体系对STBBFS催化剂光催化活性的影响.结果表明:酸性条件下,不同复合体系对STBBFS催化剂光催化活性的促进作用按Cr(VI)-CA-FN复合体系>Cr(VI)-CA复合体系>Cr(VI)单一体系增强.Cr(VI)-CA复合体系在pH=2.5,反应50 min后STBBFS催化剂光催化活性为0.426 mg·min-1·g-1时将溶液中的Cr(VI)全部还原;而Cr(VI)-CA-FN复合体系在pH=2.5,反应16 min后STBBFS催化剂光催化活性为1.2425 mg·min-1·g-1时将溶液中的Cr(VI)全部还原.两种复合体系中,Cr(VI)离子的光催化还原过程都遵循L-H动力学规律,虽然加入CA和FN后,降低了吸附对光催化还原Cr(VI)的影响,但是Cr(VI)吸附至催化剂表面仍然是整个反应过程的关键.  相似文献   

15.
雷雪飞  薛向欣 《化学学报》2008,66(22):2539-2546
采用煅烧的硫酸盐掺杂的含钛高炉渣(sulfate-modified titanium-bearing blast furnace slag, STBBFS)作为光催化剂, 研究了Cr(VI)-柠檬酸[Cr(VI)-CA]复合体系和Cr(VI)-柠檬酸-硝酸铁[Cr(VI)-CA-FN]复合体系对 STBBFS催化剂光催化活性的影响. 结果表明: 酸性条件下, 不同复合体系对STBBFS催化剂光催化活性的促进作用按Cr(VI)-CA-FN复合体系>Cr(VI)-CA复合体系>Cr(VI)单一体系增强. Cr(VI)-CA复合体系在pH=2.5, 反应50 min后STBBFS催化剂光催化活性为0.426 mg•min―1•g―1时将溶液中的Cr(VI)全部还原; 而Cr(VI)-CA-FN复合体系在pH=2.5, 反应16 min后STBBFS催化剂光催化活性为1.2425 mg•min―1•g―1时将溶液中的Cr(VI)全部还原. 两种复合体系中, Cr(VI)离子的光催化还原过程都遵循L-H动力学规律, 虽然加入CA和FN后, 降低了吸附对光催化还原Cr(VI)的影响, 但是Cr(VI)吸附至催化剂表面仍然是整个反应过程的关键.  相似文献   

16.
光催化还原CO2生成烃类燃料是一种可同时解决全球变暖和能源危机问题的最有效途径之一.尽管这方面的研究已经取得了一定的进展,但是整体的光催化转换效率还非常低.因此,需要发展更加高效的催化剂.由于半导体材料禁带宽度与太阳光谱相匹配,人们已经对其进行了广泛研究.其中Ti O2因具有无毒、强氧化性以及良好的光学和电学性质等而成为最主要的研究对象.但是对于光催化还原CO2反应来说,Ti O2仍存在很多不足,如只能吸收太阳光谱中的紫外光,光生载流子会快速结合,以及光生空穴的强氧化能力等,这些都限制了其光催化还原CO2的效率.采用窄禁带宽度半导体修饰Ti O2是解决上述不足的有效途径之一.本文采用简单的电化学方法成功制备了一种由窄禁带半导体Cu2O修饰的Ti O2纳米管(TNTs)的复合物,并运用扫描电子显微镜(SEM)、X射线衍射(XRD)以及X射线光电子能谱(XPS)表征了所制备复合物的形貌、化学组成和结晶度.表征结果显示,所制备的Ti O2为整齐排列的纳米管阵列结构;复合物中的纳米颗粒为Cu2O;当电化学沉积Cu2O的时间为5 min时,得到的Cu2O纳米颗粒初步呈类八面体结构.随着沉积时间的增加,Cu2O颗粒尺寸增加,具有八面体结构.XRD和XPS结果表明,Ti O2纳米管为锐钛矿,八面体Cu2O纳米颗粒的主要暴露晶面为(111)面.我们还进一步研究了不同量Cu2O纳米颗粒修饰的Ti O2纳米管复合物在可见光以及模拟太阳光下光催化还原CO2的能力.在可见光下,由于自身的禁带宽度,纯净的Ti O2纳米管没有任何光催化还原CO2的能力;经过Cu2O纳米颗粒的修饰,复合物显现出明显的光催化还原CO2的能力,其中经过30 min Cu2O沉积的TNTs具有最高的光催化效率.在模拟太阳光下,经过15 min Cu2O沉积的TNTs具有最高的光催化效率.在所有光催化还原CO2过程中,主要碳氢产物为甲烷.为了深入地理解该复合体系在还原CO2中的高催化效率,我们对催化剂进行了进一步的表征.紫外-可见漫反射光谱表明,Cu2O八面体纳米颗粒的沉积将TNTs的吸收光谱拓展到了可见光区域,提高了复合物对太阳光的吸收能力.此外,我们还通过测试所制样品的光电流反应、荧光发射光谱以及电化学阻抗谱,研究了催化剂中光生电子和空穴的分离和迁移能力.结果表明,适量的Cu2O沉积提高了复合物对光的吸收能力,增加了光生载流子的数量,从而使更多的光生载流子参与光催化反应.综上,本文首次报道了八面体Cu2O纳米颗粒修饰TNTs复合物的光催化还原CO2的能力.在一定量的Cu2O纳米颗粒修饰下,该复合物在光催化还原CO2生成烃类反应中表现出高效性.经过一系列详细的表征和讨论,我们认为其高效性主要源于三个方面:(1)TNTs的管状结构为反应物的吸附提供了大量的活性位点,同时一维的管状结构更有利于光生载流子的运载,从而提高了电子和空穴的分离;(2)Cu2O纳米颗粒的修饰提高了催化剂对光的吸收,促进催化剂最大程度地利用太阳光;(3)TiO 2和Cu2O之间导带以及价带位置的匹配,在减少光生载流子复合的同时也降低了Ti O2价带上空穴的氧化能力,从而抑制了CO2还原产物的再氧化过程.  相似文献   

17.
为理解Pt 纳米晶(NCs)表面上吸附与反应的结构效应, 本文利用电化学衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)初步研究了{100}优先取向的Pt 纳米晶表面CO电吸附和电氧化. 合成并清洗过的Pt 纳米晶在硫酸溶液中的循环伏安图出现了四对氧化还原峰, 其中位于0.26和0.36 V的峰分别对应于短程有序和长程有序Pt{100}上的氢吸脱附. 利用Bi、Ge 不可逆吸附法估算出Pt{100}和Pt{111}纳米晶筹分别占34% 和17%. 在原位红外光谱研究中, 首次分辨出线性吸附的CO (COL)物种在Pt 纳米晶的三个基础小晶面上的振动谱峰. 动电位光谱分析结果表明Pt{110}上吸附的COL优先电氧化, 其次{111}上的COL发生氧化, 而Pt{100}上COL氧化过电位最高.  相似文献   

18.
以钛酸四丁酯为钛源,通过温和的溶剂热法制备了{101}/[111]-晶面共暴露(乙酸-TiO_2和无控制剂-TiO_2,即HAc-TiO_2和NO-TiO_2)和{101}/{010}/[111]-晶面共暴露(甲酸-TiO_2和氢氟酸-TiO_2,即FA-TiO_2和HF-TiO_2)的锐钛矿型TiO_2纳米材料,对其晶体结构、形貌、比表面积、孔径分布、光学性质以及载流子(电子和空穴)的迁移和重组进行了表征,并对其光催化性能和循环性能进行了评价。研究表明,所制备的{101}/{010}/[111]-晶面共暴露的HF-TiO_2在光催化降解罗丹明B溶液(或对硝基苯酚溶液)的过程中显示了最高的光催化活性,其降解效率为97.35%(或68.57%),分别是FA-TiO_2、HAc-TiO_2、BD-TiO_2和NO-TiO_2的1.06倍(或1.09倍)、1.18倍(或1.14倍)、1.35倍(或2.33倍)和4.88倍(或5.80倍),这归因于其最高的结晶性、较大的表面能、优越的表面原子结构和表面电子结构、最低的光致发光强度、最快的电荷转移速率和最小的载流子复合率。  相似文献   

19.
电解法制备纳米Cu2O及其光催化性能的研究   总被引:4,自引:1,他引:4  
以紫铜板为阳极,钛网为阴极,十六烷基三甲基溴化铵(CTAB)为添加剂,采用离子膜电解法制备纳米Cu2O晶须。由X射线衍射(XRD)、透射电镜(TEM和HRTEM)、比表面积(BET)等手段对产物进行了表征。结果表明,所制备的纳米Cu2O直径约10~30nm,长度约500nm,且Cu2O的生长趋势具有〈111〉面择优取向。还发现纳米Cu2O晶须的晶面上有许多孔洞,使所制备的Cu2O具有良好的光吸收能力和一定的光催化活性。此Cu2O样品降解有机染料活性艳红(X_3B)的光催化性能的结果表明,其在1h内降解活性艳红的效率达到96.4%。  相似文献   

20.
光催化剂的暴露晶面极大地影响其光催化性能。因此,本文以Bi OI为模型材料,提出了一种提高材料光催化氧化性能的新策略。本文中,BN纳米片的成功复合诱导Bi OI纳米片更倾向于暴露富含表面晶格氧原子的{110}晶面。表面晶格氧原子可以直接参与NO的氧化反应,生成NO2。可见光催化氧化NO性能测试表明,Bi OI复合BN后,NO的去除率可达44.2%,相比于纯相Bi OI (1.4%)提升接近30倍。本文通过构建2D/2D光催化剂来调控材料富氧晶面的暴露,为增强催化剂的光催化氧化性能提供了新的策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号