首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 228 毫秒
1.
在双轴、单轴旋转调制激光陀螺航海惯导备份配置中,主惯导双轴旋转调制航海惯导故障情况下,针对备份系统单轴旋转调制航海惯导定位精度受方位陀螺常值漂移影响的问题,提出了双航海惯导定位信息融合方法。在格网系下设计了两套系统的联合误差状态Kalman滤波器,以系统间位置参数的差异为观测量,对惯性器件的确定性误差进行估计;建立了定位误差预测模型,对单轴旋转调制航海惯导的确定性定位误差进行预测补偿;通过滤波器、预测模型在地理系与格网系间的相互转换,实现了定位信息融合算法的全球适应性。最后通过仿真、实际系统实验进行了验证,结果表明:对单轴旋转调制航海惯导的定位误差预测补偿后,与补偿前相比其定位误差减小了30%,进而保证了主惯导双轴旋转调制航海惯导发生故障情况下系统的定位精度。  相似文献   

2.
捷联惯性导航系统的旋转调制技术是一种自校正方法,它能将惯性测量单元中陀螺仪的常值漂移和加速度计的零偏调制成周期性的信号,通过积分运算消除这些周期信号对系统的影响。从而使得惯导系统在不使用外部信息的条件下,自动补偿由陀螺漂移和加速度计零偏引起的导航误差,提高系统精度。从单轴旋转调制原理入手,详细推导分析了IMU绕任意转轴做单轴旋转时,陀螺和加速度计常值漂移、安装误差、刻度系数误差在单轴旋转下的误差表现形式,基于最大限度消除陀螺和加速度计常值漂移的原则,给出了最优的转轴选取方案。进行了大量仿真和实验,证明了提出的旋转方案的有效性。  相似文献   

3.
旋转调制式惯导已成为舰船主惯导,在采用旋转调制式惯导进行船体变形角测量时,由于旋转轴与惯性测量组件的坐标系不完全重合,导致船体变形角中被引入与旋转相关的波动误差。针对这一问题,提出了考虑旋转调制惯导转轴倾角误差的船体变形测量方法。推导了单轴旋转系统转轴倾角误差与船体变形测量之间的数学关系,构建了含有轴角误差的状态观测数学模型,利用卡尔曼滤波器实现了船体变形测量的同时对转轴倾角进行估计。实验结果表明,所提方法可以估计出旋转调制惯导中存在的转轴倾角大小,有效提高测得船体变形角精度,其中水平方向提升到6″,纵向方向提升到6″,为利用旋转调制式惯导进行船体变形测量提供参考。  相似文献   

4.
旋转调制方案是决定旋转式惯导系统导航精度的一个重要因素。针对双轴旋转调制惯导系统,为更好地调制各项惯性器件误差,提出了一种改进的十六位置调制方案。该方案不仅能够调制常值零偏、安装误差、对称性标度因数误差、非对称性标度因数误差,还能够有效地减小陀螺安装误差引起的速度和位置误差振荡。仿真结果表明,该方案能够将安装误差引起的速度和位置误差的振荡幅值降低至1/3;在目前的惯性器件水平下,采用该方案能够实现1 n mile/5day的定位精度。  相似文献   

5.
一种惯性测量单元非正交安装的单轴转位方法   总被引:1,自引:0,他引:1  
针对单轴旋转式捷联惯导系统中旋转轴方向惯性器件误差导致系统误差积累的问题,提出一种惯性测量单元非正交安装的单轴转位方法,该方法不但可消除旋转轴垂直方向惯性器件误差对导航精度的影响,而且可减小旋转轴方向惯性器件误差引起的导航误差。基于单轴旋转调制原理,推导了非正交安装方法和正交安装方法的陀螺常值漂移和加速度计零偏在单轴旋转下引起的姿态误差,并对其进行分析,结果表明,在陀螺仪和加速度计常值漂移及零偏相同的情况下,非正交安装方法与正交安装方法相比,安装斜角为10°时72 h的定位误差降低约50%。  相似文献   

6.
单轴旋转惯导系统“航向耦合效应”分析与补偿   总被引:1,自引:0,他引:1  
从单轴旋转惯导系统的误差方程出发,分析载体角运动对系统的影响,从改变IMU旋转角速率的角度补偿系统的"航向耦合效应"。针对绕载体系Z轴正反旋转的单轴旋转系统,载体航向运动与IMU的旋转运动耦合改变了从旋转坐标系到导航坐标系的坐标变换矩阵的形式,从而影响系统误差调制效果,导致系统的"航向耦合效应"。为保证该坐标变换矩阵的周期性,考虑改变IMU的旋转角速率,使之绕导航系而非载体系匀速旋转,隔离载体航向运动与IMU旋转运动的耦合,补偿航向运动对系统的影响。最后,利用海上试验实测的姿态和航向数据进行了单轴旋转惯导系统的误差仿真。结果表明,采取"航向耦合效应"补偿方案时,无姿态运动条件下系统位置误差减小一半;在实际姿态运动条件下,系统误差减小三分之一。  相似文献   

7.
单轴旋转对惯导系统误差特性的影响   总被引:9,自引:0,他引:9  
分析了单轴旋转惯导系统自动补偿的基本原理,对陀螺和加速度计常值漂移、安装误差、标度因数误差等因素在单轴旋转下的调制情况进行了研究。通过仿真分析了转动速度对各种误差的影响规律,指出了实际系统旋转速度和方式的选择要综合考虑陀螺的常值漂移和标度因数误差的影响。利用激光捷联惯导系统在实验室中进行了单轴旋转IMU实验,其定位精度优于1nm/24h。研究结果可以为单轴旋转惯导系统的进一步优化和工程设计提供理论参考。  相似文献   

8.
单轴/双轴旋转调制航海惯导备份配置满足了舰艇对于定位精度、可靠性、成本的综合要求,但系统间缺少信息融合。针对此问题,以单轴旋转惯导的姿态误差、速度误差、位置误差与双轴旋转惯导对应误差的差值以及两套惯导的陀螺常值漂移、水平加速度计常值零偏为系统状态,并以二者间扣除杆臂效应后的速度及位置的差值为观测量,通过联合旋转调制,改变两套系统IMU的相对姿态关系。分段常值可观测性分析表明,所有系统状态完全可观。建立了定位误差预测方程,对单轴旋转惯导方位陀螺漂移造成的定位误差进行预测补偿。实验结果表明,对单轴旋转惯导方位陀螺漂移造成的定位误差预测补偿后,其定位误差减小了30%,不仅满足了高可靠性的要求,而且提高了故障情况下的导航精度。  相似文献   

9.
旋转捷联惯导系统可以有效调制惯性器件常值误差,使系统定位精度得到提高。但系统因内部的旋转运动使得惯性器件的输出需要转化,从而增加了器件综合误差解算的复杂性。文中分析了旋转惯导系统的特性,建立了一种新的惯性器件工具误差模型,对捷联惯导系统下的环境函数误差辨识方法提出了改进方案,对惯性器件工具误差进行辨识分离。同时,针对环境函数矩阵求解时样本少、解算精度不高的问题,提出了利用加权最小二乘法对多样本值进行权重匹配分析的方法,提高了器件误差的辨识精度。实验结果表明,零偏估计及分段分离补偿的方法能较好地补偿惯性器件特性误差,有效提高系统的定位精度。  相似文献   

10.
旋转调制光纤陀螺航海惯导系统中,光纤陀螺标度因数误差会与地球自转角速度耦合产生等效的天向和北向陀螺漂移误差,也会与船体摇摆角速度以及惯性测量单元旋转调制角速度耦合产生短时动态误差,限制了长航时航海惯性导航精度。通过使用两套三轴旋转调制光纤陀螺航海惯导系统进行联合旋转调制,提出一种光纤陀螺标度因数误差在线估计与自校正方法。根据两套三轴旋转调制光纤陀螺航海惯导系统的水平旋转轴空间夹角关系建立观测方程,实现在线估计滤波。半实物仿真结果表明,自主导航过程中光纤陀螺标度因数误差在线估计精度优于1 ppm,利用输出校正方式在线补偿光纤陀螺标度因数误差导致的惯导定位误差,有效抑制了两套三轴旋转调制光纤陀螺航海惯导系统定位误差的增长。实际转台模拟实验中,两套三轴旋转调制光纤陀螺惯导系统300 h纯惯性导航整体定位最大误差分别减小25%和40%。算法采用地心地固坐标系,因此也适用于极区导航情况。  相似文献   

11.
对单轴旋转惯导系统因旋转而引入的各项误差进行分析,研究其误差特性及补偿方法。针对单轴正反连续旋转方案,在假定惯性测试组件的器件误差和其他非旋转性的误差在精确标定的情况下,推导了因旋转轴安装不正交引起的涡动、轴系间隙引起的晃动、测角器件误差、旋转控制引起的换向超调误差、角位置、角速度不准确等因素而引起的误差的表现形式,定性和定量地分析了各误差对于系统精度的影响。针对对系统影响显著的旋转轴不正交误差,提出了一种基于系统自身旋转轴正反旋转的误差标定及补偿方法并进行了仿真实验。在给定条件下的仿真结果表明,该方法能够准确标定出旋转轴的不正交误差,标定精度达到角秒级。  相似文献   

12.
基于转台误差分析的高精度惯测组合标定编排改进   总被引:3,自引:1,他引:2  
转台误差影响高精度惯测组合标定精度。利用姿态转换四元数建立了转台误差模型,分析了转台误差对一种典型惯测组合标定编排方案的影响。在分析转台误差影响规律的基础上,提出了一种标定编排改进方案,可以有效抑制转台误差,提高标定精度。仿真和试验对标定编排改进前后的标定精度和导航性能进行了对比,表明改进编排方案可以提高陀螺和加速度计安装误差角标定精度,改善系统导航性能。  相似文献   

13.
单轴旋转调制技术对激光陀螺慢变漂移的抑制   总被引:1,自引:0,他引:1  
为了提高惯导系统长时间导航精度,采用旋转调制技术将惯性器件误差调制成周期性变化信号,抑制惯导系统误差发散.首先,基于惯性测量单元的误差模型,阐述了旋转调制技术的基本原理.然后,将激光陀螺慢变漂移建模成一阶马尔可夫过程,基于一阶马尔可夫过程的自相关函数,理论分析了旋转调制技术对激光陀螺慢变漂移的抑制.最后进行了仿真与试验...  相似文献   

14.
针对低成本IMU的系统误差难以现场快速标定问题,提出了一种无需任何外部设备辅助的多位置旋转现场标定方法。该方法通过比力加速度与重力建立加速度计的误差模型,基于动态旋转以及标定后的加速度建立导航方程实现陀螺仪误差建模,使用改进的LM算法,实现低成本IMU误差参数的快速标定。实验结果表明:该方法可以有效地标定出加速度计和陀螺仪的安装误差、缩放因子和零偏误差,极大地简化了标定的过程,标定补偿后的IMU原始数据质量大幅提高,在100 s的静态导航试验中,x、y、z的定位精度分别从2541.547m、895.191m、7267.507m提升至80.229m、41.430m、99.832m。  相似文献   

15.
旋转IMU在光纤捷联航姿系统中的应用   总被引:7,自引:1,他引:7  
惯性测量单元输出信号的精度直接影响捷联惯性导航系统的精度,为了提高捷联系统的精度,以舰船光纤捷联惯性航姿系统为应用对象,采用了双轴旋转机构连续匀速旋转IMU的系统方法,把惯性测量单元输出信号中的漂移误差调制成正弦信号,通过捷联算法中的积分运算可以有效地消除陀螺和加速度计中的漂移误差,从而有效地提高捷联惯性航姿系统的精度,并进行了系统仿真实验。仿真结果表明:经过旋转以后的IMU输出信号误差较传统非旋转方法可以减小一个数量级。基于双轴旋转IMU的系统方法可以有效地减小IMU输出信号漂移误差和提高捷联惯性航姿系统的精度。  相似文献   

16.
高精度定位定向系统和重力测量系统需要高分辨率的加速度计,传统测试方法难以确定高精度加速度计的分辨率。对此,提出了一种使用双轴转台动态估算加速度计分辨率的方法,即匀速旋转调制法。将加速度计安装在双轴转台台面上,待转台调平,台面绕倾斜轴转过一个小角度后锁死,回转轴以一定的角速度旋转调制以对重力加速度分量进行细分,将加速度计的输出采样后进行FFT低通滤波,通过加速度计峰值与谷值处输出变化最大值的分析可以确定加速度计的分辨率。最后,对某型加速度计分辨率进行了实验验证,测试结果表明,当倾斜角度为0.001°,旋转调制角速率为10(°)/s,采样率为32 Hz时,输入的加速度最大变化为9.36×10-8g,加速度计敏感到的加速度变化量为1.05×10-7g。  相似文献   

17.
MEMS-IMU构型设计及惯性器件安装误差标定方法   总被引:3,自引:0,他引:3  
提出一种由三只单轴MEMS陀螺仪和三只单芯片双轴6个加速度计构成的MEMS-IMU配置方案。针对该方案的特点,研究了基于重力参考矢量对MEMS惯性器件安装误差的标定方法。该方法的关键是利用同一安装平面内的两个加速度计测量矢量的叉乘矢量的方向代替MEMS陀螺敏感轴方向,利用两轴或三轴角位置转台标定MEMS-IMU中惯性器件的安装误差。分析了标定矩阵的求逆条件数,提出了3位置和6位置的标定,指出了多位置标定中转台姿态角度的选择范围。新型MEMS-IMU配置方案及安装误差标定方法可有效解决MEMS-IMU惯性器件安装误差的标定与补偿问题。  相似文献   

18.
引入系统级旋转自补偿技术可以提高惯性导航系统的精度,该技术是指对整个IMU施加旋转运动从而改变元器件的工作方式,使元件误差得到调制,在进行积分时调制后的误差在一个周期内得到抵消.在捷联式惯导系统中,当载体处于动态时,标度因数误差和安装误差与惯性传感器的输出产生耦合,旋转调制对系统的补偿效果将受到影响.改进的途径一是提高元件标度因数稳定性,减小系统安装误差角;二是隔离载体运动,即减小陀螺仪和加速度计的输出值.本文通过对比分析在静态和动态条件下双轴连续旋转调制式惯导的误差方程,解释了载体运动对旋转调制效果的影响机理,并通过数字仿真验证了载体运动对系统补偿效果的影响.分析和仿真发现,在静态和动态条件下旋转调制都可以提高系统的精度,而在静态条件下或者在通过环架结构隔离了载体运动后旋转调制的效果相对于动态下有较为明显的提高.  相似文献   

19.
激光陀螺捷联惯性组合的全温度标定方法   总被引:8,自引:1,他引:8  
给出了激光陀螺捷联惯性组合(IMU)的误差模型,研究了一种利用双轴带温控箱速率转台的参数标定方法,标定出了IMU在各种环境温度下的模型参数,通过温度补偿有效地减小了IMU的导航误差。试验结果表明。该方法标定精度较高,适用于中等精度IMU的参数标定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号