首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C 0 shape functions are only required during its finite element implementation.Due to C 0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C 0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C 0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories.  相似文献   

2.
A p-version least squares finite element formulation for non-linear problems is applied to the problem of steady, two-dimensional, incompressible fluid flow. The Navier-Stokes equations are cast as a set of first-order equations involving viscous stresses as auxiliary variables. Both the primary and auxiliary variables are interpolated using equal-order C0 continuity, p-version hierarchical approximation functions. The least squares functional (or error functional) is constructed using the system of coupled first-order non-linear partial differential equations without linearization, approximations or assumptions. The minimization of this least squares error functional results in finding a solution vector {δ} for which the partial derivative of the error functional (integrated sum of squares of the errors resulting from individual equations for the entire discretization) with respect to the nodal degrees of freedom {δ} becomes zero. This is accomplished by using Newton's method with a line search. Numerical examples are presented to demonstrate the convergence characteristics and accuracy of the method.  相似文献   

3.
Integration of B-spline geometry and ANCF finite element analysis   总被引:1,自引:0,他引:1  
The goal of this investigation is to introduce a new computer procedure for the integration of B-spline geometry and the absolute nodal coordinate formulation (ANCF) finite element analysis. The procedure is based on developing a linear transformation that can be used to transform systematically the B-spline representation to an ANCF finite element mesh preserving the same geometry and the same degree of continuity. Such a linear transformation that relates the B-spline control points and the finite element position and gradient coordinates will facilitate the integration of computer aided design and analysis (ICADA). While ANCF finite elements automatically ensure the continuity of the position and gradient vectors at the nodal points, the B-spline representation allows for imposing a higher degree of continuity by decreasing the knot multiplicity. As shown in this investigation, a higher degree of continuity can be systematically achieved using ANCF finite elements by imposing linear algebraic constraint equations that can be used to eliminate nodal variables. The analysis presented in this study shows that continuity of the curvature vector and its derivative which corresponds in the cubic B-spline representation to zero knot multiplicity can be systematically achieved using ANCF finite elements. In this special case, as the knot multiplicity reduces to zero, the recurrence B-spline formula causes two segments to automatically blend together forming one cubic segment defined on a larger domain. Similarly in this special case, the algebraic constraint equations required for the C 3 continuity convert two ANCF cubic finite elements to one finite element, demonstrating the strong relationship between the B-spline representation and the ANCF finite element representation. For the same order of interpolation, higher degree of continuity at the finite element interface can lead to a coarser mesh and to a lower dimensional model. Using the B-spline/ANCF finite element transformation developed in this paper, the equations of motion of a finite element mesh that represents exactly the B-spline geometry can be developed. Because of the linearity of the transformation developed in this investigation, all the ANCF finite element desirable features are preserved; including the constant mass matrix that can be used to develop an optimum sparse matrix structure of the nonlinear multibody system dynamic equations.  相似文献   

4.
In this investigation, numerical convergence of finite element solutions obtained using the B-spline approach and the absolute nodal coordinate formulation (ANCF) is discussed. Furthermore, equivalence of the two formulations with different orders of polynomials and degrees of continuity is demonstrated by several numerical examples. The degree of continuity can be easily controlled in B-spline elements by changing knot multiplicities, while continuity conditions associated with higher order derivatives need to be imposed to achieve C 2 and higher continuities in ANCF elements. In order to compare element performances of the third and quartic B-spline and ANCF elements, the three-node quartic ANCF beam element is developed. It is demonstrated in several numerical examples that use of B-spline and ANCF elements with same orders and continuities leads to identical results. Furthermore, effects of polynomial orders and continuities on the accuracy and numerical convergence are demonstrated.  相似文献   

5.
C 1 natural element method (C 1 NEM) is applied to strain gradient linear elasticity, and size effects on microstructures are analyzed. The shape functions in C 1 NEM are built upon the natural neighbor interpolation (NNI), with interpolation realized to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for partial differential equations (PDEs). In the present paper, C 1 NEM for strain gradient linear elasticity is constructed, and several typical examples which have analytical solutions are presented to illustrate the effectiveness of the constructed method. In its application to microstructures, the size effects of bending stiffness and stress concentration factor (SCF) are studied for microspeciem and microgripper, respectively. It is observed that the size effects become rather strong when the width of spring for microgripper, the radius of circular perforation and the long axis of elliptical perforation for microspeciem come close to the material characteristic length scales. For the U-shaped notch, the size effects decline obviously with increasing notch radius, and decline mildly with increasing length of notch.  相似文献   

6.
Existing multibody system (MBS) algorithms treat articulated system components that are not rigidly connected as separate bodies connected by joints that are governed by nonlinear algebraic equations. As a consequence, these MBS algorithms lead to a highly nonlinear system of coupled differential and algebraic equations. Existing finite element (FE) algorithms, on the other hand, do not lead to a constant mesh inertia matrix in the case of arbitrarily large relative rigid body rotations. In this paper, new FE/MBS meshes that employ linear connectivity conditions and allow for arbitrarily large rigid body displacements between the finite elements are introduced. The large displacement FE absolute nodal coordinate formulation (ANCF) is used to obtain linear element connectivity conditions in the case of large relative rotations between the finite elements of a mesh. It is shown in this paper that a linear formulation of pin (revolute) joints that allow for finite relative rotations between two elements connected by the joint can be systematically obtained using ANCF finite elements. The algebraic joint constraint equations, which can be introduced at a preprocessing stage to efficiently eliminate redundant position coordinates, allow for deformation modes at the pin joint definition point, and therefore, this new joint formulation can be considered as a generalization of the pin joint formulation used in rigid MBS analysis. The new pin joint deformation modes that are the result of C 0 continuity conditions, allow for the calculations of the pin joint strains which can be discontinuous as the result of the finite relative rotation between the elements. This type of discontinuity is referred to in this paper as nonstructural discontinuity in order to distinguish it from the case of structural discontinuity in which the elements are rigidly connected. Because ANCF finite elements lead to a constant mass matrix, an identity generalized mass matrix can be obtained for the FE mesh despite the fact that the finite elements of the mesh are not rigidly connected. The relationship between the nonrational ANCF finite elements and the B-spline representation is used to shed light on the potential of using ANCF as the basis for the integration of computer aided design and analysis (I-CAD-A). When cubic interpolation is used in the FE/ANCF representation, C 0 continuity is equivalent to a knot multiplicity of three when computational geometry methods such as B-splines are used. C 2 ANCF models which ensure the continuity of the curvature and correspond to B-spline knot multiplicity of one can also be obtained. Nonetheless, B-spline and NURBS representations cannot be used to effectively model T-junctions that can be systematically modeled using ANCF finite elements which employ gradient coordinates that can be conveniently used to define element orientations in the reference configuration. Numerical results are presented in order to demonstrate the use of the new formulation in developing new chain models.  相似文献   

7.

A new type of Galerkin finite element for first-order initial-value problems (IVPs) is proposed. Both the trial and test functions employ the same m-degreed polynomials. The adjoint equation is used to eliminate one degree of freedom (DOF) from the test function, and then the so-called condensed test function and its consequent condensed Galerkin element are constructed. It is mathematically proved and numerically verified that the condensed element produces the super-convergent nodal solutions of O(h2m+2), which is equivalent to the order of accuracy by the conventional element of degree m + 1. Some related properties are addressed, and typical numerical examples of both linear and nonlinear IVPs of both a single equation and a system of equations are presented to show the validity and effectiveness of the proposed element.

  相似文献   

8.
Shabana  Ahmed A.  Zhang  Dayu 《Nonlinear dynamics》2020,100(2):1497-1517

The continuity of the position-vector gradients at the nodal points of a finite element mesh does not always ensure the continuity of the gradients at the element interfaces. Discontinuity of the gradients at the interface not only adversely affects the quality of the simulation results, but can also lead to computer models that do not properly represent realistic physical system behaviors, particularly in the case of soft and fluid material applications. In this study, the absolute nodal coordinate formulation (ANCF) finite elements are used to define general curvature-continuity conditions that allow for eliminating or minimizing the discontinuity of the position gradients at the element interface. For the ANCF solid element, with four-node surfaces, it is shown that continuity of the gradients tangent to an arbitrary point on a surface is ensured as the result of the continuity of the gradients at the nodal points. The general ANCF continuity conditions are applicable to both reference-configuration straight and curved geometries. These conditions are formulated without the need for using the computer-aided-design knot vector and knot multiplicity, which do not account properly for the concept of system degrees of freedom. The ANCF curvature-continuity conditions are written in terms of constant geometric coefficients obtained using the matrix of position-vector gradients that defines the reference-configuration geometry. The formulation of these conditions is demonstrated using the ANCF fully parameterized three-dimensional solid and tetrahedral elements, which employ a complete set of position gradients as nodal coordinates. Numerical results are presented in order to examine the effect of applying the curvature-continuity conditions on achieving a higher degree of smoothness at the element interfaces in the case of soft and fluid materials.

  相似文献   

9.
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L2-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L2-method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.  相似文献   

10.
A finite element method for solution of the stream function formulation of Stokes flow is developed. The method involves complete cubic non-conforming (C0) triangular Hermite elements. This element fails the patch test. To correct the element and produce a convergent method we employ a penalty method to weakly enforce the desired continuity constraint on the normal derivative across the inter-element boundaries. Successful use of the method is demonstrated to require reduced integration of the inter-element penalty with a 1-point Gauss rule. Error estimates relate the optimal choice of penalty parameter to mesh size and are corroborated by numerical convergence studies. The need for reduced integration is interpreted using rank relations for an associated hybrid method.  相似文献   

11.
Continuity of the derivatives of the main variable is an important feature to obtain an accurate representation of moving boundaries with discrete numerical methods, since the value and direction of the velocity are normally used to relocate the nodal points in a time-marching scheme. A recently developed formulation of the boundary element method using cubic B-splines provides up to C2 continuity between adjacent elements. This formulation is applied in this work to saltwater intrusion problems in confined, leaky and unconfined aquifers.  相似文献   

12.
A wind tunnel experimental investigation of self-sustained oscillations of an aeroelastic NACA0012 airfoil occurring in the transitional Re regime is presented. To the authors’ knowledge this is the first time that aeroelastic limit cycle oscillations (LCOs) associated with low Re effects have been systematically studied and reported in the public literature. While the aeroelastic apparatus is capable of two-degree-of-freedom pitch-plunge motion, the present work concerns only the motion of the airfoil when it is constrained to rotate in pure pitch. The structural stiffness is varied as well as the position of the elastic axis; other parameters such as surface roughness, turbulence intensity and initial conditions are also briefly discussed. In conjunction with the pitch measurements, the flow is also recorded using hot-wire anemometry located in the wake at a distance of one chord aft of the trailing edge. It is observed that for a limited range of chord-based Reynolds numbers, 4.5×104Rec1.3×105, steady state self-sustained oscillations are observed. Below and above that range, these oscillations do not appear. They are characterized by a well-behaved harmonic motion, whose frequency can be related to the aeroelastic natural frequency, low amplitude (θmax<5.5°) and some sensitivity to flow perturbations and initial conditions. Furthermore, hot-wire measurements for the wing held fixed show that no periodicity in the undisturbed free-stream nor in the wake account for the oscillations. Overall, these observations suggest that laminar separation plays a role in the oscillations, either in the form of trailing edge separation or due to the presence of a laminar separation bubble.  相似文献   

13.
The phenomenon of low amplitude self-sustained pitch oscillations in the transitional Reynolds number regime is studied numerically through unsteady, two-dimensional aeroelastic simulations. Based on the experimental data, simulations have been limited in the Reynolds number range 5.0×104<Rec<1.5×105. Both laminar and URANS calculations (using the SST kω model with a low-Reynolds-number correction) have been performed and found to produce reasonably accurate limit cycle pitching oscillations (LCO). This investigation confirms that the laminar separation of the boundary layer near the trailing edge plays a critical role in initiating and sustaining the pitching oscillations. For this reason, the phenomenon is being labelled as laminar separation flutter. As a corollary, it is also shown that turbulence tends to inhibit their existence. Furthermore, two regimes of LCO are observed, one where the flow is laminar and separated without re-attachment, and the second for which transition has occurred followed by turbulent re-attachment. Finally, it is established that the high-frequency, shear instabilities present in the flow which lead to von Kármán vortex shedding are not crucial, nor necessary, to the maintaining mechanism of the self-sustained oscillations.  相似文献   

14.
This paper describes a direct numerical simulation (DNS) study of turbulent flow over a rectangular trailing edge at a Reynolds number of 1000, based on the freestream quantities and the trailing edge thickness h; the incoming boundary layer displacement thickness δ* is approximately equal to h. The time-dependent inflow boundary condition is provided by a separate turbulent boundary layer simulation which is in good agreement with existing computational and experimental data. The turbulent trailing edge flow simulation is carried out using a parallel multi-block code based on finite difference methods and using a multi-grid Poisson solver. The turbulent flow in the near-wake region of the trailing edge has been studied first for the effects of domain size and grid resolution. Then two simulations with a total of 256 × 512 × 64 (∼ 8.4×106) and 512 × 1024 × 128 (∼ 6.7×107) grid points in the computational domain are carried out to investigate the key flow features. Visualization of the instantaneous flow field is used to investigate the complex fluid dynamics taking place in the near-wake region; of particular importance is the interaction between the large-scale spanwise, or Kármán, vortices and the small-scale quasi-streamwise vortices contained within the inflow boundary layer. Comparisons of turbulence statistics including the mean flow quantities are presented, as well as the pressure distributions over the trailing edge. A spectral analysis applied to the force coefficient in the wall normal direction shows that the main shedding frequency is characterized by a Strouhal number based on h of approximately 0.118. Finally, the turbulence kinetic energy budget is analysed. Received 4 March 1999 and accepted 27 October 2000  相似文献   

15.
In this paper a refined higher-order global-local theory is presented to analyze the laminated plates coupled bending and extension under thermo-mechanical loading. The in-plane displacement fields are composed of a third-order polynomial of global coordinate z in the thickness direction and 1,2–3 order power series of local coordinate ζk in the thickness direction of each layer, which is identical to the 1,2–3 global-local higher-order theory by Li and Liu [Li, X.Y., Liu, D., 1997. Generalized laminate theories based on double superposition hypothesis. Int. J. Numer. Methods Eng. 40, 1197–1212] Moreover, a second-order polynomial of global coordinate z in the thickness direction is chosen as transverse displacement field. The transverse shear stresses can satisfy continuity at interfaces, and the number of unknowns does not depend on the layer numbers of the laminate.Based on this theory, a quadrilateral laminated plate element satisfying the requirement of C1 continuity is presented. By solving both bending and thermal expansion problems of laminates, it can be found that the present refined theory is very accurate and obviously superior to the existing 1,2–3 global-local higher-order theory. The most attractive feature of this theory is that the transverse shear stresses can be accurately predicted from direct use of constitutive equations without any post-processing method. It is also shown that the present quadrilateral element possesses higher accuracy.  相似文献   

16.
A higher-order zig-zag theory for laminated composite and sandwich structures is proposed. The proposed theory satisfies the interlaminar continuity conditions and free surface conditions of transverse shear stresses. Moreover, the number of unknown variables involved in present model is independent of the number of layers. Compared to the zig-zag theory available in literature, the merit of present theory is that the first derivatives of transverse displacement have been taken out from the in-plane displacement fields, so that the C0 interpolation functions is only required during its finite element implementation. To obtain accurately transverse shear stresses by integrating three-dimensional equilibrium equations within one element, a six-node triangular element is employed to model the present zig-zag theory. Numerical results show that the present zig-zag theory can predict more accurate in-plane displacements and stresses in comparison with other zig-zag theories. Moreover, it is convenient to obtain transverse shear stresses by integration of equilibrium equations, as the C0 shape functions is only used when implemented in a finite element.  相似文献   

17.
Creep behavior of crack in dissimilar materials is studied using steady-state C* path independent integral and ABAQUS finite element code. The specific geometry involves an edge crack parallel to the interface of a bi-material tensile specimen at high temperature. Under extensive creep, the C* value for the bi-material specimen can be significantly higher than that for the homogeneous specimen. For small-scale creep material mismatch has little influence on the transient integral designated by Ct. The integral parameters C* or Ct are shown to depend on the inhomogeneity of the system and cannot characterize the creep behavior of cracks.The approach is extended to creep crack growth in a welded compact tension specimen. Modification factors are introduced for different crack and weld interface geometries.  相似文献   

18.
Alberto Peano 《Meccanica》1976,11(1):42-47
Summary In the vicinity of structural discontinuities such as cut-outs, stiffeners and support attachments high order polynomials approximate the peak stresses occurring there better than conventional low order ones, provided only the minimal continuity requirements are enforced.When transverse shear energy is neglected, C 1 continuity (continuity of both functional values and normal derivatives along interelemental boundaries) and no more than C 1 continuity has to be enforced. In particular continuity of second derivatives at vertices must be avoided.Here a family of C 1 triangular elements with arbitrary order of polynomial interpolation is created. The algorithm has been devised in such a way that convergence to the correct solution can be seeked by increasing the polynomial degree instead of decreasing the element size. This process becomes now as inexpensive as possible and particularly suited for automation.
Sommario Nei pressi di discontinuità strutturali (aperture, intagli, nervature, ecc.) polinomi di grado elevato approssimano le concentrazioni di sforzo meglio degli usuali polinomi di basso grado, purchè la continuità interelementare non ecceda i requisiti variazionali. Perciò nella teoria di Kirchoff solo la continuità C 1 (continuità della funzione e delle sue derivate prime) deve essere soddisfatta. In particolare la continuità delle derivate seconde ai vertici deve essere evitata.Nella nota si crea una famiglia di elementi triangolari di continuità C 1 e con arbitrario grado dei polinomi interpolanti. L'algoritmo consente il calcolo sul medesimo reticolo di una sequenza di soluzioni di crescente accuratezza aumentando il grado dei polinomi approssimanti.La ricerca della convergenza diventa molto meno onerosa ed è suscettibile di automatizzazione.


Paper presented at the EUROMECH 66 Colloquium, Warsaw, September 1975. Research partially supported by the Consiglio Nazionale delle Ricerche (C.N.R.)  相似文献   

19.
This article presents a novel mathematical model for moderately thick and deep laminated composite conoidal shell. The zero transverse shear stress at top and bottom of conoidal shell conditions is applied. Novelty in the present formulation is the inclusion of curvature effect in displacement field and cross curvature effect in strain field. This present model is suitable for deep and moderately thick conoidal shell. The peculiarity in the conoidal shell is that due to its complex geometry, its peak value of transverse deflection is not at its center like other shells. The C1 continuity requirement associated with the present model has been suitably circumvented. A nine-node curved quadratic isoparametric element with seven nodal unknowns per node is used in finite element formulation of the proposed mathematical model. The present model results are compared with experimental, elasticity, and numerical results available in the literature. This is the first effort to solve the problem of moderately thick and deep laminated composite conoidal shell using parabolic transverse shear strain deformation across the thickness of conoidal shell. Many new numerical problems are solved for the static study of moderately thick and deep laminated composite conoidal shell considering 10 different practical boundary conditions, four types of loadings, six different hl/hh (minimum rise/maximum rise) ratios, and four different laminations.  相似文献   

20.
A new finite element method is presented to solve one‐dimensional depth‐integrated equations for fully non‐linear and weakly dispersive waves. For spatial integration, the Petrov–Galerkin weighted residual method is used. The weak forms of the governing equations are arranged in such a way that the shape functions can be piecewise linear, while the weighting functions are piecewise cubic with C2‐continuity. For the time integration an implicit predictor–corrector iterative scheme is employed. Within the framework of linear theory, the accuracy of the scheme is discussed by considering the truncation error at a node. The leading truncation error is fourth‐order in terms of element size. Numerical stability of the scheme is also investigated. If the Courant number is less than 0.5, the scheme is unconditionally stable. By increasing the number of iterations and/or decreasing the element size, the stability characteristics are improved significantly. Both Dirichlet boundary condition (for incident waves) and Neumann boundary condition (for a reflecting wall) are implemented. Several examples are presented to demonstrate the range of applicabilities and the accuracy of the model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号