首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper presents a p- version least squares finite element formulation (LSFEF) for two-dimensional, incompressible, non-Newtonian fluid flow under isothermal and non-isothermal conditions. The dimensionless forms of the diffential equations describing the fluid motion and heat transfer are cast into a set of first-order differential equations using non-Newtonian stresses and heat fluxes as auxiliary variables. The velocities, pressure and temperature as well as the stresses and heat fluxes are interpolated using equal-order, C0-continuous, p-version hierarchical approximation functions. The application of least squares minimization to the set of coupled first-order non-linear partial differential equations results in finding a solution vector {δ} which makes the partial derivatives of the error functional with respect to {δ} a null vector. This is accomplished by using Newton's method with a line search. The paper presents the implementation of a power-law model for the non-Newtonian Viscosity. For the non-isothermal case the fluid properties are considered to be a function of temperature. Three numerical examples (fully developed flow between parallel plates, symmetric sudden expansion and lid-driven cavity) are presented for isothermal power-law fluid flow. The Couette shear flow problem and the 4:1 symmetric sudden expansion are used to present numerical results for non-isothermal power-law fluid flow. The numerical examples demonstrate the convergence characteristics and accuracy of the formulation.  相似文献   

2.
The paper presents a generalization of the classical L2-norm weighted least squares method for the numerical solution of a first-order hyperbolic system. This alternative least squares method consists of the minimization of the weighted sum of the L2 residuals for each equation of the system. The order of accuracy of global conservation of each equation of the system is shown to be inversely proportional to the weight associated with the equation. The optimal relative weights between the equations are then determined in order to satisfy global conservation of the energy of the physical system. As an application of the algorithm, the shallow water equations on an irregular domain are first discretized in time and then solved using Laplace modification and the proposed least squares method.  相似文献   

3.
Rafael Cortell 《Meccanica》2012,47(3):769-781
An analysis is presented for the steady non-linear viscous flow of an incompressible viscous fluid over a horizontal surface of variable temperature with a power-law velocity under the influences of suction/blowing, viscous dissipation and thermal radiation. Numerical results are illustrated by means of tables and graphs. The governing partial differential equations are converted into nonlinear ordinary differential equations by a similarity transformation. The effects of the stretching parameter n, suction/blowing parameter b, Prandtl number σ, Eckert number Ec(Ec * )E_{c}(E_{c}^{ *} ) and radiation parameter N R are discussed. Two cases are studied, namely, (i) Prescribed surface temperature (PST case) and, (ii) Prescribed heat flux at the sheet (PHF case).  相似文献   

4.
We study abstract evolution equations with nonlinear damping terms and source terms, including as a particular case a nonlinear wave equation of the type $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea where 0 < T £ ¥0\Omega is a bounded regular open subset of \mathbbRn\mathbb{R}^n, n 3 1n\ge 1, b,c > 0b,c>0, p > 2p>2, m > 1m>1. We prove a global nonexistence theorem for positive initial value of the energy when 1 < m < p,    2 < p £ \frac2nn-2. 1-Laplacian operator, q > 1q>1.  相似文献   

5.
In this paper, exact solutions are constructed for stationary election beams that are degenerate in the Cartesian (x,y,z), axisymmetric (r,θ,z), and spiral (in the planes y=const (u,y,v)) coordinate systems. The degeneracy is determined by the fact that at least two coordinates in such a solution are cyclic or are integrals of motion. Mainly, rotational beams are considered. Invariant solutions for beams in which the presence of vorticity resulted in a linear dependence of the electric-field potential ? on the above coordinates were considered in [1], In degenerate solutions, the presence of vorticity results in a quadratic or more complex dependence of the potential on the coordinates that are integrals of motion. In [2] and in a number of papers referred to in [2], the degenerate states of irrotational beams are described. The known degenerate solutions for rotational beams apply to an axisymmetric one-dimensional (r) beam with an azimuthal velocity component [3] and to relativistic conical flow [1]. The equations used below follow from the system of electron hydrodynamic equations for a stationary relativistic beam $$\begin{array}{*{20}c} {\sum\limits_{\beta = 1}^3 {\frac{\partial }{{\partial q^\beta }}\left[ {\sqrt \gamma g^{\beta \beta } g^{\alpha \alpha } \left( {\frac{{\partial A_\alpha }}{{\partial q^\beta }} - \frac{{\partial A_\beta }}{{\partial q^\alpha }}} \right)} \right]} = 4\pi \rho \sqrt \gamma g^{\alpha \alpha } u_\alpha ,} \\ {\sum\limits_{\beta = 1}^3 {\frac{\partial }{{\partial q^\beta }}\left( {\sqrt \gamma g^{\beta \beta } \frac{{\partial \varphi }}{{\partial q^\beta }}} \right)} = 4\pi \rho \sqrt {\gamma u} ,\sum\limits_{\beta = 1}^3 {g^{\beta \beta } u_\beta ^2 + 1 = u^2 } } \\ \begin{gathered} \frac{\eta }{c}u\frac{{\partial \mathcal{E}}}{{\partial q^\alpha }} = \sum\limits_{\beta = 1}^3 {g^{\beta \beta } u_\beta } \left( {\frac{{\partial p_\beta }}{{\partial q^\alpha }} - \frac{{\partial p_\alpha }}{{\partial q^\beta }}} \right), \hfill \\ \begin{array}{*{20}c} {\sum\limits_{\beta = 1}^3 {\frac{\partial }{{\partial q^\beta }}(\sqrt \gamma g^{\beta \beta } \rho u_\beta ) = 0,u \equiv \frac{\eta }{{c^2 }}(\varphi + \mathcal{E}) + 1,} } \\ {cu_\alpha \equiv \frac{\eta }{c}A_\alpha + p_\alpha ,\alpha ,\beta = 1,2,3,\gamma \equiv g_{11} g_{22} g_{33} } \\ \end{array} \hfill \\ \end{gathered} \\ \end{array} $$ where qβ denotes orthogonal coordinates with the metric tensor gββ (β=1,2,3); Aα is the magnetic potential; Aα = (uα/u)c is the electron velocity; ρ is the scalar space-charge density (ρ > 0); is the energy in eV; pα is the generalized momentum of an electron per unit mass; η is the electron charge-mass ratio.  相似文献   

6.
The two-field dual-mixed Fraeijs de Veubeke variational formulation of three-dimensional elasticity serves as the starting point of the derivation of a dimensionally reduced shell model presented in this paper. The fundamental variables of this complementary energy-based variational principle are the not a priori symmetric stress tensor and the skew-symmetric rotation tensor. The tensor of first-order stress functions is applied to satisfy translational equilibrium, while the rotation tensor plays the role of a Lagrange multiplier to ensure rotational equilibrium. The volumetric locking-free shell model uses unmodified three-dimensional constitutive equations, and no classical kinematical hypotheses are employed during the derivation. The numerical performance of the related low-order h-, and higher-order p-version finite elements developed for axisymmetrically loaded cylindrical shells is investigated by two representative model problems. It is numerically proven that no negative effect can be experienced when the thickness is small and tends to zero.  相似文献   

7.
In this paper, we present higher order least-squares finite element formulations for viscous, incompressible, isothermal Navier–Stokes equations using spectral/hp basis functions. The second-order Navier–Stokes equations are recast as first-order system of equations using stresses as auxiliary variables. Both steady-state and transient problems are considered. For a better coupling of pressure and velocity, especially in transient flows, an iterative penalisation strategy is employed. The outflow-type boundary conditions are applied in a weak sense through the least-squares functional. The formulation is verified by solving various benchmark problems like the lid-driven cavity, backward-facing step and flow over cylinder problems using direct serial solver UMFPACK.  相似文献   

8.
This work presents the development of mathematical models based on conservation laws for a saturated mixture of ν homogeneous, isotropic, and incompressible constituents for isothermal flows. The constituents and the mixture are assumed to be Newtonian or generalized Newtonian fluids. Power law and Carreau–Yasuda models are considered for generalized Newtonian shear thinning fluids. The mathematical model is derived for a ν constituent mixture with volume fractions ${\phi_\alpha}$ using principles of continuum mechanics: conservation of mass, balance of momenta, first and second laws of thermodynamics, and principles of mixture theory yielding continuity equations, momentum equations, energy equation, and constitutive theories for mechanical pressures and deviatoric Cauchy stress tensors in terms of the dependent variables related to the constituents. It is shown that for Newtonian fluids with constant transport properties, the mathematical models for constituents are decoupled. In this case, one could use individual constituent models to obtain constituent deformation fields, and then use mixture theory to obtain the deformation field for the mixture. In the case of generalized Newtonian fluids, the dependence of viscosities on deformation field does not permit decoupling. Numerical studies are also presented to demonstrate this aspect. Using fully developed flow of Newtonian and generalized Newtonian fluids between parallel plates as a model problem, it is shown that partial pressures p α of the constituents must be expressed in terms of the mixture pressure p. In this work, we propose ${p_\alpha=\phi_\alpha p}$ and ${\sum_\alpha^\nu p_\alpha = p}$ which implies ${\sum_\alpha^\nu \phi_\alpha = 1}$ which obviously holds. This rule for partial pressure is shown to be valid for a mixture of Newtonian and generalized Newtonian constituents yielding Newtonian and generalized Newtonian mixture. Modifications of the currently used constitutive theories for deviatoric Cauchy stress tensor are proposed. These modifications are demonstrated to be essential in order for the mixture theory for ν constituents to yield a valid mathematical model when the constituents are the same. Dimensionless form of the mathematical models is derived and used to present numerical studies for boundary value problems using finite element processes based on a residual functional, that is, least squares finite element processes in which local approximations are considered in ${H^{k,p}\left(\bar{\Omega}^e\right)}$ scalar product spaces. Fully developed flow between parallel plates and 1:2 asymmetric backward facing step is used as model problems for a mixture of two constituents.  相似文献   

9.
In this paper,the convergence rates of solutions to the three-dimensional turbulent flow equations are considered.By combining the Lp-Lq estimate for the linearized equations and an elaborate energy method,the convergence rates are obtained in various norms for the solution to the equilibrium state in the whole space when the initial perturbation of the equilibrium state is small in the H3-framework.More precisely,the optimal convergence rates of the solutions and their first-order derivatives in the L2-norm are obtained when the Lp-norm of the perturbation is bounded for some p ∈[1,6/5).  相似文献   

10.
Understanding turbulent wall-bounded flows remains an elusive goal. Most turbulent phenomena are non-linear, complex and have broad range of scales that are difficult to completely resolve. Progress is made only in minute steps and enlightening models are rare. Herein, we undertake the effort to bundle several experimental and numerical databases to overcome some of these difficulties and to learn more about the kinematics of turbulent wall-bounded flows. The general scope of the present work is to quantify the characteristics of wall-normal and spanwise Reynolds stresses, which might be different for confined (e.g., pipe) and semi-confined (e.g., boundary layer) flows. In particular, the peak position of wall-normal stress and a shoulder in spanwise stress never described in detail before are investigated using select experimental and direct numerical simulation databases available in the open literature. It is found that the positions of the á v2 ñ + \left\langle {v'{^2} } \right\rangle^{ + } -peak in confined and semi-confined flow differ significantly above δ + ≈ 600. A similar behavior is found for the position of the á uv¢ ñ + \left\langle {u'v'} \right\rangle^{ + } -peak. The upper end of the logarithmic region seems to be closely related to the position of the á v2 ñ + \left\langle {v'{^2} } \right\rangle^{ + } -peak. The á w2 ñ + \left\langle {w'{^2} } \right\rangle^{ + } -shoulder is found to be twice as far from the wall than the á v2 ñ + \left\langle {v'{^2} } \right\rangle^{ + } -peak. It covers a significantly large portion of the typical zero-pressure-gradient turbulent boundary layer.  相似文献   

11.
The concept of very weak solution introduced by Giga (Math Z 178:287–329, 1981) for the Stokes equations has hardly been studied in recent years for either the Navier–Stokes equations or the Navier–Stokes type equations. We treat the stationary Stokes, Oseen and Navier–Stokes systems in the case of a bounded open set, connected of class C1,1{\mathcal{C}^{1,1}} of \mathbbR3{\mathbb{R}^3}. Taking up once again the duality method introduced by Lions and Magenes (Problèmes aus limites non-homogènes et applications, vols. 1 & 2, Dunod, Paris, 1968) and Giga (Math Z 178:287–329, 1981) for open sets of class C{\mathcal{C}^{\infty}} [see also chapter 4 of Necas (Les méthodes directes en théorie des équations elliptiques. (French) Masson et Cie, éd., Paris; Academia, éditeurs, Prague, 1967), which considers the Hilbertian case p = 2 for general elliptic operators], we give a simpler proof of the existence of a very weak solution for stationary Oseen and Navier–Stokes equations when data are not regular enough, based on density arguments and a functional framework adequate for defining more rigourously the traces of non-regular vector fields. In the stationary Navier–Stokes case, the results will be valid for external forces not necessarily small, which lets us extend the uniqueness class of solutions for these equations. Considering more regular data, regularity results in fractional Sobolev spaces will also be discussed for the three systems. All these results can be extended to other dimensions.  相似文献   

12.
In this paper we address the problem of the implementation of boundary conditions for the derived pressure Poisson equation of incompressible flow. It is shown that the direct Galerkin finite element formulation of the pressure Poisson equation automatically satisfies the inhomogeneous Neumann boundary conditions, thus avoiding the difficulty in specifying boundary conditions for pressure. This ensures that only physically meaningful pressure boundary conditions consistent with the Navier-Stokes equations are imposed. Since second derivatives appear in this formulation, the conforming finite element method requires C1 continuity. However, for many problems of practical interest (i.e. high Reynolds numbers) the second derivatives need not be included, thus allowing the use of more conventional C0 elements. Numerical results using this approach for a wall-driven contained flow within a square cavity verify the validity of the approach. Although the results were obtained for a two-dimensional problem using the p-version of the finite element method, the approach presented here is general and remains valid for the conventional h-version as well as three-dimensional problems.  相似文献   

13.
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where a c D t α x(t)) and 0<α<1, such that the following is the corresponding Euler–Lagrange
(1)
At last, exact solutions for some Euler–Lagrange equations are presented. In particular, we consider the following equations
(2)
(3)
where g(t) and f(t) are suitable functions. D. Baleanu is on leave of absence from Institute of Space Sciences, P.O. BOX MG-23, 76900 Magurele-Bucharest, Romania. e-mail: baleanu@venus.nipne.ro.  相似文献   

14.
One class of partially invariant solutions of the Navier—Stokes equations is studied here. This class of solutions is constructed on the basis of the four-dimensional algebra L 4 with the generators Systematic investigation of the case, where the Monge—Ampere equation (10) is hyperbolic (Lf z + k + l ≥ 0) is given. It is shown that this class of solutions is a particular case of the solutions with linear velocity profile with respect to one or two space variables.  相似文献   

15.
Under natural spectral stability assumptions motivated by previous investigations of the associated spectral stability problem, we determine sharp L p estimates on the linearized solution operator about a multidimensional planar periodic wave of a system of conservation laws with viscosity, yielding linearized L 1L p L p stability for all p \geqq 2{p \geqq 2} and dimensions d \geqq 1{d \geqq 1} and nonlinear L 1H s L p H s stability and L 2-asymptotic behavior for p\geqq 2{p\geqq 2} and d\geqq 3{d\geqq 3} . The behavior can in general be rather complicated, involving both convective (that is, wave-like) and diffusive effects.  相似文献   

16.
Steady-state free vibrations, with large amplitude displacements, of variable stiffness composite laminated plates (VSCL) are analysed. The intentions of this research are: (1)?to find out how the natural frequencies and (mode) shapes evolve with the displacement amplitude in this new type of laminated composite material; (2)?to describe modal interactions in VSCL due to energy interchanges under the coupling induced by non-linearity; (3)?to compare the VSCL with traditional, constant stiffness, laminated plates. The VSCL of interest here have curvilinear fibres and the numerical analysis carried out is based on a recently developed p-version finite element with hierarchic basis functions. The element follows first-order shear deformation theory and considers Von Kármán??s non-linear terms. The time domain equations of motion are first reduced using the linear modes of vibration and then transformed to the frequency domain via the harmonic balance method. These frequency domain equations are solved by an arc-length continuation method.  相似文献   

17.
1 IntroductionandLemmasTherearemanyresultsaboutexistence (globalorlocal)andasymptoticbehaviorofsolutionsforreaction_diffusionequations[1- 9].Bytheaidsofresults[2 ,3]ofequation u/ t=Δu-λ|u|γ- 1uwithinitial_boundaryvalues,paper [4 ]studiedtheproblemof u/ t=Δu-λ|eβtu|γ- …  相似文献   

18.
In this paper we solve the stationary Oseen equations in . The behavior of the solutions at infinity is described by setting the problem in weighted Sobolev spaces including anisotropic weights. The study is based on a Lp theory for 1 < p < ∞.  相似文献   

19.
20.
The oscillation spaces introduced by Jaffard are a variation on the definition of Besov spaces for either s ≥ 0 or s ≤ −d/p. On the contrary, the spaces for −d/p < s < 0 cannot be sharply imbedded between Besov spaces with almost the same exponents, and, thus, they are new spaces of really different nature. Their norms take into account correlations between the positions of large wavelet coefficients through the scales. Several numerical studies uncovered such correlations in several settings including turbulence, image processing, traffic, finance, etc. These spaces allow one to capture oscillatory behaviors that are left undetected by Sobolev or Besov spaces. Unlike Sobolev spaces (respectively, Besov spaces B p s,q (ℝd)), which are expressed by simple conditions on wavelet coefficients as ℓp norms (respectively, mixed ℓp − ℓq norms), oscillation spaces are written as ℓp averages of local C s norms. In this paper, we prove the completeness of oscillation spaces in spite of such a mixture of two norms of different kinds. Published in Neliniini Kolyvannya, Vol. 8, No. 4, pp. 435–443, October–December, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号