首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this investigation, numerical convergence of finite element solutions obtained using the B-spline approach and the absolute nodal coordinate formulation (ANCF) is discussed. Furthermore, equivalence of the two formulations with different orders of polynomials and degrees of continuity is demonstrated by several numerical examples. The degree of continuity can be easily controlled in B-spline elements by changing knot multiplicities, while continuity conditions associated with higher order derivatives need to be imposed to achieve C 2 and higher continuities in ANCF elements. In order to compare element performances of the third and quartic B-spline and ANCF elements, the three-node quartic ANCF beam element is developed. It is demonstrated in several numerical examples that use of B-spline and ANCF elements with same orders and continuities leads to identical results. Furthermore, effects of polynomial orders and continuities on the accuracy and numerical convergence are demonstrated.  相似文献   

2.
Integration of B-spline geometry and ANCF finite element analysis   总被引:1,自引:0,他引:1  
The goal of this investigation is to introduce a new computer procedure for the integration of B-spline geometry and the absolute nodal coordinate formulation (ANCF) finite element analysis. The procedure is based on developing a linear transformation that can be used to transform systematically the B-spline representation to an ANCF finite element mesh preserving the same geometry and the same degree of continuity. Such a linear transformation that relates the B-spline control points and the finite element position and gradient coordinates will facilitate the integration of computer aided design and analysis (ICADA). While ANCF finite elements automatically ensure the continuity of the position and gradient vectors at the nodal points, the B-spline representation allows for imposing a higher degree of continuity by decreasing the knot multiplicity. As shown in this investigation, a higher degree of continuity can be systematically achieved using ANCF finite elements by imposing linear algebraic constraint equations that can be used to eliminate nodal variables. The analysis presented in this study shows that continuity of the curvature vector and its derivative which corresponds in the cubic B-spline representation to zero knot multiplicity can be systematically achieved using ANCF finite elements. In this special case, as the knot multiplicity reduces to zero, the recurrence B-spline formula causes two segments to automatically blend together forming one cubic segment defined on a larger domain. Similarly in this special case, the algebraic constraint equations required for the C 3 continuity convert two ANCF cubic finite elements to one finite element, demonstrating the strong relationship between the B-spline representation and the ANCF finite element representation. For the same order of interpolation, higher degree of continuity at the finite element interface can lead to a coarser mesh and to a lower dimensional model. Using the B-spline/ANCF finite element transformation developed in this paper, the equations of motion of a finite element mesh that represents exactly the B-spline geometry can be developed. Because of the linearity of the transformation developed in this investigation, all the ANCF finite element desirable features are preserved; including the constant mass matrix that can be used to develop an optimum sparse matrix structure of the nonlinear multibody system dynamic equations.  相似文献   

3.
In this paper, new planar isoparametric triangular finite elements (FE) based on the absolute nodal coordinate formulation (ANCF) are developed. The proposed ANCF elements have six coordinates per node: two position coordinates that define the absolute position vector of the node and four gradient coordinates that define vectors tangent to coordinate lines (parameters) at the same node. To shed light on the importance of the element geometry and to facilitate the development of some of the new elements presented in this paper, two different parametric definitions of the gradient vectors are used. The first parametrization, called area parameterization, is based on coordinate lines along the sides of the element in the reference configuration, while the second parameterization, called Cartesian parameterization, employs coordinate lines defined along the axes of the structure (body) coordinate system. The fundamental differences between the ANCF parameterizations used in this investigation and the parametrizations used for conventional finite elements are highlighted. The Cartesian parameterization serves as a unique standard for the triangular FE assembly. To this end, a transformation matrix that defines the relationship between the area and the Cartesian parameterizations is introduced for each element in order to allow for the use of standard FE assembly procedure and define the structure (body) inertia and elastic forces. Using Bezier geometry and a linear mapping, cubic displacement fields of the new ANCF triangular elements are systematically developed. Specifically, two new ANCF triangular finite elements are developed in this investigation, namely four-node mixed-coordinate and three-node ANCF triangles. The performance of the proposed new ANCF elements is evaluated by comparison with the conventional linear and quadratic triangular elements as well as previously developed ANCF rectangular and triangular elements. The results obtained in this investigation show that in the case of small and large deformations as well as finite rotations, all the elements considered can produce correct results, which are in a good agreement if appropriate mesh sizes are used.  相似文献   

4.
5.
The element created in this investigation is based on the it absolute nodal coordinate formulation (ANCF) which has been successfully used in flexible multibody system dynamic and integration of computer aid design and analysis (ICADA). When modeling a B-spline curve with ANCF beam element, it is the common manner to convert this curve into a series of Bézier curves because the systematical conversion between ANCF beam element and a Bézier curve has already been built. In order to avoid the constrain equation produced in this method and to express a B-spline curve using only one element, an alternative approach is developed, leading to the piecewise ANCF (PANCF) beam element. It is demonstrated that when two ANCF beam elements are connected according to a particular continuity, they can constitute a PANCF element. Besides, a new PANCF element will be produced when an ANCF element is connected to an existing PANCF element. The continuity condition can be automatically ensured by the selection of nodal coordinates and the calculation of the piecewise continuous shape functions. The algorithm for converting a B-spline curve to a PANCF beam element is then given. There also are discussions on the features of PANCF element. When two neighboring segments of PANCF element have the same assumed length, the position vector at the interface cannot be expressed by the other coordinates so the position vector is preserved in the \(C^{2}\) continuous situation. Two examples are given to conclude the interpolation and continuity properties of the shape function and to demonstrate the feasibility of this PANCF in the ICADA.  相似文献   

6.
This paper is focused on the dynamic formulation of mechanical joints using different approaches that lead to different models with different numbers of degrees of freedom. Some of these formulations allow for capturing the joint deformations using a discrete elastic model while the others are continuum-based and capture joint deformation modes that cannot be captured using the discrete elastic joint models. Specifically, three types of joint formulations are considered in this investigation; the ideal, compliant discrete element, and compliant continuum-based joint models. The ideal joint formulation, which does not allow for deformation degrees of freedom in the case of rigid body or small deformation analysis, requires introducing a set of algebraic constraint equations that can be handled in computational multibody system (MBS) algorithms using two fundamentally different approaches: constrained dynamics approach and penalty method. When the constrained dynamics approach is used, the constraint equations must be satisfied at the position, velocity, and acceleration levels. The penalty method, on the other hand, ensures that the algebraic equations are satisfied at the position level only. In the compliant discrete element joint formulation, no constraint conditions are used; instead the connectivity conditions between bodies are enforced using forces that can be defined in their most general form in MBS algorithms using bushing elements that allow for the definition of general nonlinear forces and moments. The new compliant continuum-based joint formulation, which is based on the finite element (FE) absolute nodal coordinate formulation (ANCF), has several advantages: (1) It captures modes of joint deformations that cannot be captured using the compliant discrete joint models; (2) It leads to linear connectivity conditions, thereby allowing for the elimination of the dependent variables at a preprocessing stage; (3) It leads to a constant inertia matrix in the case of chain like structure; and (4) It automatically captures the deformation of the bodies using distributed inertia and elasticity. The formulations of these three different joint models are compared in order to shed light on the fundamental differences between them. Numerical results of a detailed tracked vehicle model are presented in order to demonstrate the implementation of some of the formulations discussed in this investigation.  相似文献   

7.
The absolute nodal coordinate formulation (ANCF) has been used in the analysis of large deformation of flexible multibody systems that encompass belt drive, rotor blade, and cable applications. As demonstrated in the literature, the ANCF finite elements are ideal for isogeometric analysis. The purpose of this investigation is to establish a relationship between the B-splines, which are widely used in the geometric modeling, and the ANCF finite elements in order to construct continuum models of large-deformation geometries. This paper proposes a simplified approach to map the B-spline surfaces into ANCF thin plate elements. Matrix representation of the mapping process is established and examined through numerical examples successfully. The matrix representation of the mapping process is used because of its suitability of computer coding and to minimize the calculation time. The error estimation is carried out by analyzing the gap between the points of each ANCF element and the corresponding points of the portion of the B-spline surface. The Hausdorff distance is used to study the effect of the number of control points, the degree of interpolation, and the knot multiplicity on the mapped geometry. It is found that cubic interpolation is recommended for optimizing the accuracy of mapping the B-spline surface to ANCF thin plate elements. It is found that thin plate element in ANCF missing a number of basis functions which considered a source of error between the two surfaces, as well as it does not allow to converting the ANCF thin plate elements model to B-spline surface. In this investigation, an application example of modeling large-size wind turbine blade with uniform structure is illustrated. The use of the continuum plate elements in modeling flexible blades is more efficient because of the relative scale between the plate thickness and its length and width and the high flexibility of its structure. The numerical results are compared with the results of ANSYS code with a good agreement. The dynamic simulation for mapped surface model shows a numerical convergence, which ensures the ability of using the proposed approach for applications of dynamics for design and computer-aided design.  相似文献   

8.
Nonlinear Dynamics - In this paper, methods for developing isoparametric tetrahedral finite elements (FE) based on the absolute nodal coordinate formulation (ANCF) are presented. The proposed ANCF...  相似文献   

9.
Shabana  Ahmed A.  Zhang  Dayu 《Nonlinear dynamics》2020,100(2):1497-1517

The continuity of the position-vector gradients at the nodal points of a finite element mesh does not always ensure the continuity of the gradients at the element interfaces. Discontinuity of the gradients at the interface not only adversely affects the quality of the simulation results, but can also lead to computer models that do not properly represent realistic physical system behaviors, particularly in the case of soft and fluid material applications. In this study, the absolute nodal coordinate formulation (ANCF) finite elements are used to define general curvature-continuity conditions that allow for eliminating or minimizing the discontinuity of the position gradients at the element interface. For the ANCF solid element, with four-node surfaces, it is shown that continuity of the gradients tangent to an arbitrary point on a surface is ensured as the result of the continuity of the gradients at the nodal points. The general ANCF continuity conditions are applicable to both reference-configuration straight and curved geometries. These conditions are formulated without the need for using the computer-aided-design knot vector and knot multiplicity, which do not account properly for the concept of system degrees of freedom. The ANCF curvature-continuity conditions are written in terms of constant geometric coefficients obtained using the matrix of position-vector gradients that defines the reference-configuration geometry. The formulation of these conditions is demonstrated using the ANCF fully parameterized three-dimensional solid and tetrahedral elements, which employ a complete set of position gradients as nodal coordinates. Numerical results are presented in order to examine the effect of applying the curvature-continuity conditions on achieving a higher degree of smoothness at the element interfaces in the case of soft and fluid materials.

  相似文献   

10.
The finite element absolute nodal coordinate formulation (ANCF) is often used in modeling very flexible bodies in multibody system (MBS) applications. This formulation leads to a constant mass matrix, allowing for an efficient sparse matrix implementation. Nonetheless, the use of the ANCF finite elements to model stiff structures can lead to high frequencies associated with ANCF coupled deformation modes, as discussed in the literature. Implicit numerical integration methods can be effectively used to develop efficient procedures for the solution of MBS differential/algebraic equations. Most existing implicit integration algorithms, however, require numerical differentiation of the equations of motion, and some of these integration methods do not ensure that the kinematic algebraic constraint equations are satisfied at all levels (position, velocity, and acceleration). Because of these limitations, existing implicit integration methods can be less accurate and less efficient when used to solve large scale MBS applications. In order to circumvent this problem, the two-loop implicit sparse matrix numerical integration (TLISMNI) method was proposed for the solution of MBS differential/algebraic equations. The TLISMNI method does not require numerical differentiation of the forces and allows for an efficient sparse matrix implementation. This paper discusses TLISMNI implementation issues including the step size selection, the error control, and the effect of the numerical damping. The relation between the step size selection and the structure stiffness is also discussed. The use of the computer implementation described in this paper is demonstrated by solving very stiff structure problems using the Hilber?CHughes?CTaylor (HHT) method, which includes numerical damping. An eigenvalue analysis and Fast Fourier Transform (FFT) are performed in order to identify the fundamental modes of deformation and demonstrate that the contributions of these fundamental modes can be erroneously damped out when some other implicit integration methods are used. The TLISMNI method, on the other hand, captures the contributions of these fundamental modes. The results, obtained using the TLISMNI method, are compared with the results obtained using other methods including the implicit HHT-I3 and the explicit Adams integration methods. The results obtained show that the TLISMNI method can be five times faster than the other two methods when no numerical damping is considered.  相似文献   

11.
The focus of this investigation is to study the mechanics of the human knee using a new method that integrates multibody system and large deformation finite element algorithms. The major bones in the knee joint consisting of the femur, tibia, and fibula are modeled as rigid bodies. The ligaments structures are modeled using the large displacement finite element absolute nodal coordinate formulation (ANCF) with an implementation of a Neo-Hookean constitutive model that allows for large change in the configuration as experienced in knee flexion, extension, and rotation. The Neo-Hookean strain energy function used in this study takes into consideration the near incompressibility of the ligaments. The ANCF is used in the formulation of the algebraic equations that define the ligament/bone rigid connection. A unique feature of the ANCF model developed in this investigation is that it captures the deformation of the ligament cross section using structural finite elements such as beams. At the ligament/bone insertion site, the ANCF is used to define a fully constrained joint. This model will reflect the fact that the geometry, placement and attachment of the two collateral ligaments (the LCL and MCL), are significantly different from what has been used in most knee models developed in previous investigations. The approach described in this paper will provide a more realistic model of the knee and thus more applicable to future research studies on ligaments, muscles and soft tissues (LMST). Current finite element models are limited due to simplified assumptions for the spatial and time dependent material properties inherent in the anisotropic and anatomic constraints associated with joint stability, and the static conditions inherent in the analysis. The ANCF analysis is not limited to static conditions and results in a fully dynamic model that accounts for the distributed inertia and elasticity of the ligaments. The results obtained in this investigation show that the ANCF finite elements can be an effective tool for modeling very flexible structures like ligaments subjected to large flexion and extension. In the future, the more realistic ANCF models could assist in examining the mechanics of the knee to study knee injuries and possible prevention means, as well as an improved understanding of the role of each individual ligament in the diagnosis and assessment of disease states, aging and potential therapies.  相似文献   

12.
This investigation is concerned with the use of an implicit integration method with adjustable numerical damping properties in the simulation of flexible multibody systems. The flexible bodies in the system are modeled using the finite element absolute nodal coordinate formulation (ANCF), which can be used in the simulation of large deformations and rotations of flexible bodies. This formulation, when used with the general continuum mechanics theory, leads to displacement modes, such as Poisson modes, that couple the cross section deformations, and bending and extension of structural elements such as beams. While these modes can be significant in the case of large deformations, and they have no significant effect on the CPU time for very flexible bodies; in the case of thin and stiff structures, the ANCF coupled deformation modes can be associated with very high frequencies that can be a source of numerical problems when explicit integration methods are used. The implicit integration method used in this investigation is the Hilber–Hughes–Taylor method applied in the context of Index 3 differential-algebraic equations (HHT-I3). The results obtained using this integration method are compared with the results obtained using an explicit Adams-predictor-corrector method, which has no adjustable numerical damping. Numerical examples that include bodies with different degrees of flexibility are solved in order to examine the performance of the HHT-I3 implicit integration method when the finite element absolute nodal coordinate formulation is used. The results obtained in this study show that for very flexible structures there is no significant difference in accuracy and CPU time between the solutions obtained using the implicit and explicit integrators. As the stiffness increases, the effect of some ANCF coupled deformation modes becomes more significant, leading to a stiff system of equations. The resulting high frequencies are filtered out when the HHT-I3 integrator is used due to its numerical damping properties. The results of this study also show that the CPU time associated with the HHT-I3 integrator does not change significantly when the stiffness of the bodies increases, while in the case of the explicit Adams method the CPU time increases exponentially. The fundamental differences between the solution procedures used with the implicit and explicit integrations are also discussed in this paper.  相似文献   

13.
In many multibody system applications, the system components are made of structural elements that can have different orientations, leading to slope discontinuities. In this paper, a numerical investigation of a new procedure that can be used to model structures with slope discontinuities in the finite element absolute nodal coordinate formulation (ANCF) is presented. This procedure can be applied to model slope discontinuities in the case of commutative rotations of gradient deficient elements that are used for modeling thin beam and plate structures. An important special case to which the proposed procedure can be applied is the case of all planar gradient deficient ANCF finite elements. The use of the proposed method leads to a constant orthogonal element transformation that describes an arbitrary initial configuration. As a consequence, one obtains, in the case of large commutative rotations and large deformations, a constant mass matrix for structures which have complex geometry. The procedure used in this investigation to model slope discontinuities requires the use of the concept of the intermediate finite element coordinate system. For each finite element, a new set of gradient coordinates that define, at the discontinuity node, the element deformation with respect to the intermediate element coordinate system is introduced. These new gradient coordinates are assumed to be equal for the two finite elements at the point of intersection. That is, the change of the gradients of two elements at the intersection point from their respective intermediate initial reference configuration is assumed to be the same. This procedure leads to a set of linear algebraic equations that define the orthogonal transformation matrix for the finite element. Numerical examples are presented in order to demonstrate the use of the proposed procedure for modeling slope discontinuities.  相似文献   

14.
In this paper, we present a new family of direct arbitrary–Lagrangian–Eulerian (ALE) finite volume schemes for the solution of hyperbolic balance laws on unstructured meshes in multiple space dimensions. The scheme is designed to be high‐order accurate both in space and time, and the mesh motion, which provides the new mesh configuration at the next time step, is taken into account in the final finite volume scheme that is based directly on a space‐time conservation formulation of the governing PDE system. To improve the computational efficiency of the algorithm, high order of accuracy in space is achieved using the a posteriori MOOD limiting strategy that allows the reconstruction procedure to be carried out with only one reconstruction stencil for any order of accuracy. We rely on an element‐local space‐time Galerkin finite element predictor on moving curved meshes to obtain a high‐order accurate one‐step time discretization, while the mesh velocity is computed by means of a suitable nodal solver algorithm that might also be supplemented with a local rezoning procedure to improve the mesh quality. Next, the old mesh configuration at time level tn is connected to the new one at tn + 1 by straight edges, hence providing unstructured space‐time control volumes, on the boundary of which the numerical flux has to be integrated. Here, we adopt a quadrature‐free integration, in which the space‐time boundaries of the control volumes are split into simplex sub‐elements that yield constant space‐time normal vectors and Jacobian matrices. In this way, the integrals over the simplex sub‐elements can be evaluated once and for all analytically during a preprocessing step. We apply the new high‐order direct ALE algorithm to the Euler equations of compressible gas dynamics (also referred to as hydrodynamics equations) as well as to the magnetohydrodynamics equations and we solve a set of classical test problems in two and three space dimensions. Numerical convergence rates are provided up to fifth order of accuracy in 2D and 3D for both hyperbolic systems considered in this paper. Finally, the efficiency of the new method is measured and carefully compared against the original formulation of the algorithm that makes use of a WENO reconstruction technique and Gaussian quadrature formulae for the flux integration: depending on the test problem, the new class of very efficient direct ALE schemes proposed in this paper can run up to ≈12 times faster in the 3D case. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The absolute nodal coordinate formulation (ANCF) is characterized by being developed specifically for dynamic analysis of large deformation problems. The objective of the study is to investigate how the shape of the initial mesh configuration influences the obtained numerical solution. After a thorough review of three available formulations, they are used in three different convergence studies. Initially a reference study is conducted to determine how the ANCF performs in an uniform and rectangular mesh. Subsequently, the ANCF methods sensitivity to irregular mesh is investigated and finally, the ability of the ANCF method to describe curved structures is evaluated. This study concludes that thin ANCF shell elements are sensitive to both the initial shape and their loading condition. Furthermore, both the initial configuration and the loading condition affect how the ANCF-based models converge. It is suggested that models containing thin ANCF shell elements are subjected to extensive validation studies, before they are used in a design process.  相似文献   

16.
The Absolute Nodal Coordinate Formulation (ANCF) has been initiated in 1996 by Shabana (Computational Continuum Mechanics, 3rd edn., Cambridge: Cambridge University Press, 2008). It introduces large displacements of planar and spatial finite elements relative to the global reference frame without using any local frame. A sub-family of beam, plate and cable finite elements with large deformations are proposed and employed the 3D theory of continuum mechanics. In the ANCF, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element. In contrast to other large deformation formulations, the equations of motion contain constant mass matrices as well as zero centrifugal and Coriolis inertia forces. The only nonlinear term is a vector of elastic forces. This investigation concerns a way to generate new finite element in the ANCF for laminated composite plates. This formulation utilizes the assumption that the bonds between the laminae are thin and shear is non-deformable. Consequently, the Equivalent Single Layer, ESL model, is implemented. In the ESL models, the laminate is assumed to deform as a single layer, assuming a smooth variation of the displacement field across the thickness. In this paper, the coupled electromechanical effect of Piezoelectric Laminated Plate is imposed within the ANCF thin plate element, in such a way as to achieve the continuity of the gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Convergence and accuracy of the finite-element ANCF Piezoelectric Laminated Plate is demonstrated in geometrically nonlinear static and dynamic test problems, as well as in linear analysis of natural frequencies. The computer implementation and several numerical examples are presented in order to demonstrate the use of the formulation developed in this paper. A comparison with the commercial finite element package COMSOL MULTIPHYSICS () is carried out with an excellent agreement.  相似文献   

17.
In this paper, the process by which geometrical and structural matrices of plate finite elements employing absolute nodal coordinate formulation (ANCF) are constructed is studied. The kinematic and topological properties of an arbitrary plate finite element are described using universal digital code dncm that provides systematic enumeration of finite elements. This code is formed using the element’s dimension d, the number of nodes it possesses n, the number of scalar coordinates per node c, and a multiplier describing the process of transforming a conventional finite element to an ANCF element m. The detailed generation of a new type of triangular plate finite element 2343 using numerical computation of shape functions is also discussed in the paper. The new triangular element employs position vectors and slope vectors up to second-order mixed-derivative slope vector. A detailed derivation of the equations of motion of the element is also provided and examples of its numerical simulation and validation presented.  相似文献   

18.
In multibody system dynamics, the absolute nodal coordinate formulation(ANCF)uses power functions as interpolating polynomials to describe the displacement field. It can get accurate results for flexible bodies that undergo large deformation and large rotation. However, the power functions are irrational representation which cannot describe the complex shapes precisely, especially for circular and conic sections. Different from the ANCF representation,the rational absolute nodal coordinate formulation(RANCF) utilizes rational basis functions to describe geometric shapes, which allows the accurate representation of complicated displacement and deformation in dynamics modeling. In this paper, the relationships between the rational surface and volume and the RANCF finite element are provided, and the generalized transformation matrices are established correspondingly. Using these transformation matrices, a new four-node three-dimensional RANCF plate element and a new eight-node three-dimensional RANCF solid element are proposed based on the RANCF. Numerical examples are given to demonstrate the applicability of the proposed elements. It is shown that the proposed elements can depict the geometric characteristics and structure configurations precisely, and lead to better convergence in comparison with the ANCF finite elements for the dynamic analysis of flexible bodies.  相似文献   

19.
20.
本文系统地研究了基于一致旋转场列式的绝对节点坐标 (ANCF consistentrotation-based formulation, ANCF/CRBF)平面梁单元的泊松闭锁问题及闭锁缓解技术.为了全面理解该类型单元的闭锁特性及明确单元的应用范围,文中首先开发了两种新的ANCF/CRBF刚性截面梁单元, 新单元在ANCF全参数梁的基础上,对梯度向量施加正交矩阵约束, 得到梯度与转角对时间导数之间的速度转换矩阵,从而引入转角参数. 新单元节点处完全消除了泊松闭锁和剪切效应,这是与传统ANCF/CRBF刚性截面梁单元的不同之处. 然后,对比分析了这三种ANCF/CRBF刚性截面梁单元泊松闭锁的特点.发现该类型单元对节点的横向梯度施加了运动学约束, 导致节点处截面不能变形,无法捕捉泊松效应, 但是单元内部能完全捕捉,这种不连续情况会加重单元整体的泊松闭锁问题. 并且发现对单元梯度约束的越多,闭锁问题越严重. 随后, 分别采用两种闭锁缓解技术, 弹性线方法和应变分解方法,进一步研究了单元的收敛性. 最终,通过多种静力学和动力学测试研究了泊松闭锁对ANCF/CRBF平面梁单元计算精度的影响及闭锁缓解技术在该类型单元上的缓解效果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号