首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.  相似文献   

2.
The bending analysis of functionally graded carbon nanotube (CNT) reinforced doubly curved singly ruled truncated rhombic cone is investigated. In this study, a simple C0 isoparametric finite element formulation based on third order shear deformation theory is presented. To characterize the membrane-flexure behavior observed in a CNT reinforced truncated rhombic cone, a displacement field involving higher-order terms in in-plane fields is considered. The proposed kinematics field incorporates for transverse shear deformation and nonlinear variation of the in-plane displacement field through the thickness to predict the overall response of the CNT reinforced truncated rhombic cone in an accurate sense. The material properties of the CNT reinforced truncated rhombic cone are estimated according to the rule of mixture. The present model eliminates the need of shear correction factor and imposed zero-transverse shear strain at upper and lower surface of the truncated rhombic cone. The new feature in present model is simultaneous inclusion of twist curvature in strain field as well as curvature in displacement field that makes it suitable for moderately thick and deep truncated rhombic cone. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The proposed model has been validated with analytical, experimental, and finite element results from the literature. This is first attempt to study bending response of CNT reinforced doubly curved singly ruled truncated rhombic cone. The effect of CNT distribution, boundary condition, loading pattern, and other geometric parameters are also examined.  相似文献   

3.
This paper derives accurate equations of elastic deformation for laminated composite deep, thick shells. The equations include shells with a pre-twist and accurate force and moment resultants which are considerably different than those used for plates. This is due to the fact that the stresses over the thickness of the shell have to be integrated on a trapezoidal-like cross-section of a shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical. A consistent set of equations of motion, energy functionals and boundary conditions are also derived. These may be used in obtaining exact solutions or approximate ones like the Ritz or finite element methods.  相似文献   

4.
带旋转自由度C^0类任意四边形板(壳)单元   总被引:5,自引:0,他引:5  
朱菊芬  郑罡 《计算力学学报》2000,17(3):287-292300
基于Reissner-Mindilin板弯曲理论和Von-Karman大挠度理论,采用单元域内和边界位移插值一致性的概念,将四节点等参弯曲单元与Allman膜变形二次插值模式相结合,对层合板壳的大挠度分析提供了一种实用的带旋转自由度的四节点C^0类板单元。大量算例表明:该单元对板壳结构的线性强度、稳定性和后屈曲分析都表现出良好的收敛性和足够的工程精度。  相似文献   

5.
This paper deals with closed-form solutions for in-plane and out-of-plane free vibration of moderately thick laminated transversely isotropic spherical shell panels on the basis of Sanders theory without any usage of approximate methods. The governing equations of motion and the boundary conditions are derived using Hamilton’s principle. The highly coupled governing equations are recast to some uncoupled equations by introducing four potential functions. Also, some relations were presented for the unknowns of the original set of equations in terms of the unknowns of the uncoupled equations. According to the proposed analytical approach, both Navier and Lévy-type explicit solutions are developed for moderately thick laminated spherical shell panels. The efficiency and high accuracy of the present approach are investigated by comparing some of the present study with the available results in the literature and the results of 3D finite element method. The effects of various shell parameters like shear modulus ratio of transversely isotropic materials and curvature ratio on the natural frequencies are studied. Clearly, the proposed solutions can accurately predict the in-plane and out-of-plane natural frequencies of moderately thick transversely isotropic spherical shell panels.  相似文献   

6.
对于较厚复合材料弯曲问题,已有锯齿型厚板理论最大误差超过35%。为了合理地分析较厚复合材料弯曲问题,发展了准确高效的锯齿型厚板理论。此理论位移变量个数独立于层合板层数,其面内位移不含有横向位移一阶导数,构造有限元时仅需C0插值函数,故称此理论为C0型锯齿厚板理论。基于发展的锯齿理论,构造了六节点三角形单元并推导了复合材料层合/夹层板弯曲问题有限元列式。为验证C0型锯齿厚板理论性能,分析了复合材料层合/夹层厚板弯曲问题,并与已有C1型锯齿理论对比。结果表明,本文的C0型锯齿厚板理论最大误差15%,比已有锯齿型厚板理论准确高效。  相似文献   

7.
根据修正的余能原理,推导出一种求解复合材料层合圆柱壳的杂交应力单元。取用六面体等参单元,此单元反映了各层材料性质不同及应力分布沿整个厚度不连续现象,同时计入横向剪切变形和法向挤压变形,适用于厚层壳体。文章通过实例说明此单元能准确求出各层内的应力值,实用价值高。  相似文献   

8.
A mathematical model to quantify the variation of the displacement field through the thickness of a laminated shell has been proposed previously by Beakou and Touratier (1993). Transverse shear deformations were taken into account and thickness correction factors were not required but the analysis was restricted to shallow shells (i.e. the principal radii of shell curvature were both assumed to be large relative to the shell thickness). In this technical note the later restriction is removed by replacing the Cartesian coordinate form of elasticity tensor with the more general curvilinear form. The modified laminate level model coefficients are derived from the expressions for the curvilinear transverse shear stress components by: applying zero transverse shear stress boundary conditions at the top and bottom of the shell and enforcing interlayer layer continuity at each internal lamina interface. The purpose of this model enhancement is to facilitate the development of a degenerate finite element type that can be used to compute the deformation of a non-shallow laminated shell.  相似文献   

9.
基于有限条带思想,引入结点扭率自由度,利用深梁单元的位移模式建立了一个4结点16自由度中厚板弯曲高阶单元,此单元是薄板单元BFS-16的推广形式,其特点是单元的横向位移、转角位移、剪应变位移模式直接构造,在边界上位移模式与深梁单元一致,方便与梁单元叠加,适应于带加劲肋的板弯曲问题分析,用于薄壁结构时可考虑翘曲。实例计算显示,此单元精度高,计算稳定,收敛快,无剪切闭锁现象,能较好地反映中厚板的边界效应。  相似文献   

10.
To demonstrate the solutions of linear and geometrically non-linear analysis of laminated composite plates and shells, the co-rotational non-linear formulation of the shell element is presented. The combinations of an enhanced assumed strain (EAS) in the membrane strains and assumed natural strains (ANS) in the shear strains improve the behavior of 4-node shell element. To secure computational efficiency in the incremental non-linear analysis, the present element uses the form of the resultant forces pre-integrated through the thickness. The transverse shear stiffness of the laminates is defined by an equilibrium approach instead of the shear correction factor. Numerical examples of this study show very good agreement with the references.  相似文献   

11.
Here, the dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells subjected to thermal/mechanical load is carried out based on higher-order theory. The formulation accounts for the variation of the in-plane and transverse displacements through the thickness, abrupt discontinuity in slope of the in-plane displacements at the interfaces, and includes in-plane, rotary inertia terms, and also the inertia contributions due to the coupling between the different order displacement terms. The strain–displacement relations are accurately accounted for in the formulation. The shell responses are obtained employing finite element approach in conjunction with direct time integration technique. A detailed parametric study is carried out to bring out the effects of length and thickness ratios, eccentricity parameters and number of layers on the thermal/mechanical response characteristics of non-circular shells.  相似文献   

12.
This paper addresses the buckling and post-buckling of laminated composite plates using higher order shear deformation theory associated with Green–Lagrange non-linear strain–displacement relationships. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strain conditions at the top and bottom surfaces of the plate in von Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model.  相似文献   

13.
In this article, nonlinear free vibration behavior of laminated composite shallow shell under uniform temperature load is investigated. The mid-plane kinematics of the laminated shell is evaluated based on higher order shear deformation theory to count the out of plane shear stresses and strains accurately. The nonlinearity in geometry is taken in Green-Lagrange sense due to the thermal load. In addition to that, all the nonlinear higher order terms are taken in the mathematical model to capture the original flexure of laminated panel. A nonlinear finite element model is proposed to discretise the developed model and the governing equations are derived using Hamilton’s principle. The sets of governing equations are solved using a direct iterative method. In order to validate the model, the results are compared with the available published literature and the limitations of the existing models have been discussed. Finally, some numerical experimentation has been done using the developed nonlinear model for different parameters (thickness ratio, curvature ratio, modular ratio, support condition, lamination scheme, amplitude ratio and thermal expansion coefficient) and their effects on the responses are discussed in detail.  相似文献   

14.
A simply supported glass/polyvinyl butyral (PVB)/glass beam is modelled by plane finite elements. The distribution of strain and stress through the beam thickness and along its axis is obtained as a result of linear finite element analysis. It shows that the bending stress in the glass layers is determinant for the load-bearing capability of laminated glasses, but the shear in the PVB-interlayer plays an important role for glass-layer interaction. A mathematical model of triplex glass beam is derived, consisting of a bending curvature differential equation and a differential equation of PVB-interlayer shear interaction. The derived equations are solved analytically with boundary conditions of simply supported beam under uniform transverse load. A parametric study of the derived mathematical model is carried out. The model is utilized for lightweight structure optimization of layer thicknesses. The results of the optimization show that laminated glasses could be superior to monolithic glasses.  相似文献   

15.
The paper deals with the geometrically non-linear analysis of laminated composite beams, plates and shells in the framework of the first-order transverse shear deformation (FOSD) theory. A central point of the present paper is the discussion of the relevance of five- and six-parameter variants, respectively, of the FOSD hypothesis for large rotation plate and shell problems. In particular, it is shown that the assumption of constant through-thickness distribution of the transverse normal displacements is acceptable only for small and moderate rotation problems. Implications inherent in this assumption that are incompatible with large rotations are discussed from the point of view of the transverse normal strain-displacement relations as well as in the light of an enhanced, accurate large rotation formulation based on the use of Euler angles. The latter one is implemented as an updating process within a Total Lagrangian formulation of the six-parameter FOSD large rotation plate and shell theory. Numerical solutions are obtained by using isoparametric eight-node Serendipity-type shell finite elements with reduced integration. The Riks-Wempner-Ramm arc-length control method is used to trace primary and secondary equilibrium paths in the pre- and post-buckling range of deformation. A number of sample problems of non-linear, large rotation response of composite laminated plate and shell structures are presented including symmetric and asymmetric snap-through and snap-back problems.  相似文献   

16.
考虑横法向热变形,建议了C0型Reddy理论,并用于分析复合材料层合/夹层板热膨胀问题。虽然考虑了横法向热应变,但不增加额外的位移变量。此理论位移场不含有横向位移一阶导数,构造有限元时仅需C0插值函数。基于这一模型,运用虚位移原理推导了复合材料板平衡方程以及构造了6节点三角形板单元,并分析了简支复合材料层合/夹层板的热膨胀问题。数值结果表明,建立的模型能准确分析复合材料层合/夹层板热膨胀问题,而忽略横法向热应变的理论分析热膨胀问题误差较大。  相似文献   

17.
In order to conveniently develop C0 continuous element for the accurate analysis of laminated composite and sandwich plates with general configurations, this paper develops a C0-type zig–zag theory in which the interlaminar continuity of transverse shear stresses is a priori satisfied and the number of unknowns is independent of the number of layers. The present theory is applicable not only to the cross-ply but also to the angle-ply laminated composite and sandwich plates. On the premise of retaining the merit of previous zig–zag theories, the derivatives of transverse displacement have been taken out from the displacement fields. Therefore, based on the proposed zig–zag theory, it is very easy to construct the C0 continuous element. To assess the performance of the proposed model, the classical quadratic six-node triangular element with seven degrees of freedom at each node is presented for the static analysis of laminated composite and sandwich plates. The typical examples are taken into account to assess the performance of finite element based on the proposed zig–zag theory by comparing the present results with the three-dimensional elasticity solutions. Numerical results show that the present model can produce the more accurate deformations and stresses compared with the previous zig–zag theories.  相似文献   

18.
Based on the elasto-plastic mechanics, the damage analysis and dynamic response of an elasto-plastic laminated composite shallow spherical shell under low velocity impact are carried out in this paper. Firstly, a yielding criterion related to spherical tensor of stress is proposed to model the mixed hardening orthotropic material, and accordingly an incremental elasto-plastic damage constitutive relation for the laminated shallow spherical shell is founded when a strain-based Hashin failure criterion is applied to assess the damage initiation and propagation. Secondly, using the presented constitutive relations and the classical nonlinear shell theory, a series of incremental nonlinear motion equations of orthotropic moderately thick laminated shallow spherical shell are obtained. The questions are solved by using the orthogonal collocation point method, Newmark method and iterative method synthetically. Finally, a modified elasto-plastic contact law is developed to determine the normal contact force and the effect of damage, geometrical parameters, elasto-plastic contact and boundary conditions on the contact force and the dynamic response of the structure under low velocity impact are investigated.  相似文献   

19.
Axisymmetric buckling analysis is presented for moderately thick laminated shallow, truncated conical caps under transverse load. Buckling under uniformly distributed loads and ring loads applied statically or as step function loads is considered. Marguerre-type, first-order shear deformation shallow shell theory is formulated in terms of transverse deflection w, the rotation ψ of the normal to the mid-surface and the stress function Φ. The governing equations are solved by the orthogonal point collocation method. Truncated conical caps with a circular opening, which is either free or plugged by a rigid central mass, have been analysed for clamped and simple supports with movable and immovable edge conditions. Typical numerical results are presented illustrating the effect of various parameters.  相似文献   

20.
This work extends a previously presented coupled refined layerwise theory to dynamic analysis of piezoelectric laminated composite and sandwich beams. Contrary to most of the available theories, all the kinematic and stress boundary conditions are satisfied at the interfaces of the piezoelectric layers with the non-zero longitudinal electric field. Moreover, both electrical transverse normal strains and transverse flexibility are taken into account for the first time in the present theory. In the presented formulation a high-order polynomial, an exponential expression and a layerwise term containing the electric field are included in the describing expression of the in-plane displacement of the beam. For the transverse displacement, the coupled refined model uses a combination of continuous piecewise fourth-order polynomials with a layerwise representation of electrical unknowns. The electric field is also approximated as linear across the thickness direction of piezoelectric layers. One of advantages of the present theory is that the mechanical number of the unknown parameters is very small and is independent of the number of the layers. For validation of the proposed model, various free and forced vibration tests for thin and thick laminated/sandwich piezoelectric beams are carried out. For various electrical and mechanical boundary conditions, excellent correlation has been found between the results obtained from the proposed formulation with those resulted from the three-dimensional theory of piezoelasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号