首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
采用原位聚合法制备了聚四氟乙烯@二氧化硅(PTFE@SiO_2)复合粒子.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、粒径分布仪以及傅立叶红外光谱仪(FTIR)对复合粒子的形貌、粒径分布和组成结构进行了分析.结果表明:所制备的复合粒子呈核壳型复合结构,粒子尺寸处于亚微米级别.分散性试验表明:该粒子在水中具有良好的分散性和稳定性.利用LSR-2M往复式摩擦磨损试验机测试了不同试验条件下复合粒子在水环境中的摩擦学性能,结果表明:在常温、0.019 m/s滑动速率以及0.2μm的钢盘粗糙度下,PTFE@SiO_2润滑剂具有最佳的摩擦学性能;相比于纯水和添加了PTFE/SiO_2的润滑剂,其摩擦系数降低了近80%,磨损体积减小了1~2个数量级.分析表明:PTFE@SiO_2复合粒子优异的水润滑性能主要与核壳结构的存在以及在摩擦过程中形成的高质量转移膜密切相关.  相似文献   

2.
采用闭合场非平衡磁控溅射技术分别制备了纯MoS2薄膜以及MoS2-Ti和MoS2-Ti-TiB2复合薄膜,利用真空高温摩擦试验机对比考察三种薄膜在真空环境中25~300℃下的摩擦学性能,通过拉曼光谱(Raman)、X射线衍射(XRD)和透射电镜(TEM)等分析复合元素对薄膜结构的影响以及摩擦前后薄膜结构的变化,探讨摩擦磨损机理.结果表明:纯MoS2薄膜以(002)和(100)晶面取向生长,结构疏松,硬度低,在真空不同温度下摩擦寿命很短;Ti和TiB2复合后,薄膜呈现致密的非晶结构,硬度升高;MoS2-Ti薄膜在低温下(25和100℃)下具有优异的摩擦学性能,当温度达到200℃以上时,摩擦寿命急剧降低;MoS2-Ti-TiB2复合薄膜在25~300℃全温度范围内都保持低的摩擦系数和磨损率,这与其致密的非晶结构、摩擦界面MoS2 (002)晶面有序化以及高硬度耐高温TiB<...  相似文献   

3.
采用闭合场非平衡磁控溅射技术制备了MoS2-C异质复合薄膜,利用多环境可控摩擦试验机测试了薄膜在真空环境中的摩擦学性能,通过拉曼光谱仪(Raman)、X射线衍射仪(XRD)和透射电子显微镜(TEM)等表征手段分析了薄膜摩擦前后结构的变化,探讨了超润滑机理.结果表明:复合薄膜呈现致密的“纳米晶/非晶”结构,在真空中具有优异的摩擦学性能,保持了超低摩擦系数(0.006~0.009)和磨损率[1.026×10-7 mm3/(N·m)],达到了超润滑状态.摩擦过程中碳选择性转移到钢球表面形成非晶碳转移层,薄膜磨痕表面形成有序的MoS2 (002)晶面,摩擦发生在MoS2有序晶体和非晶碳转移膜之间,形成非公度异质接触,降低摩擦系数实现超润滑.钢球/MoS2-Ti、a-C:H/MoS2-Ti摩擦配副在相同条件下的不同摩擦行为,也证明了上述超润滑机理.  相似文献   

4.
采用水热法制备了两种不同形貌结构的石墨烯/二硫化钼纳米复合物(RGO/MoS2-1和RGO/MoS2-2). 通过电子显微镜、拉曼光谱、X射线衍射仪和热重分析仪对所制备材料的形貌、成分和晶格结构进行表征;利用SRV-IV微动摩擦磨损试验机考察了RGO/MoS2-1和RGO/MoS2-2作为PAO-4添加剂的摩擦学性能. 结果显示具有花状结构的RGO/MoS2-2与RGO/MoS2-1相比具有更大的层间距,且因其较大的层间距使得RGO/MoS2-2表现出较好的摩擦学性能. Raman和XPS对润滑机理的表征结果证实了RGO/MoS2复合纳米添加剂优异的摩擦学性能归因于吸附和摩擦化学反应的协同作用.   相似文献   

5.
采用一步水热法设计制备了二硫化钼/硫化锌(MoS2/ZnS)纳米杂化体,并利用热压成型技术得到聚酰亚胺/二硫化钼/硫化锌(PI/MoS2/ZnS)复合材料. 采用扫描电子显微镜、透射电子显微镜、X射线衍射仪以及光电子能谱仪对所制备材料的形貌和化学组成进行表征,结果表明MoS2纳米薄片均匀致密地包覆在ZnS纳米颗粒表面. 热重分析和差示扫描量热曲线结果表明,MoS2/ZnS纳米杂化体的引入显著地提升了PI基体的热稳定性能. 摩擦磨损测试结果表明,三种填料(MoS2,ZnS和MoS2/ZnS)均能有效改善PI基体的摩擦学性能,其中MoS2/ZnS纳米杂化体的增强效应最为显著,这主要归因于MoS2纳米片和ZnS纳米粒子之间的协同增强效应. 当MoS2/ZnS纳米杂化体的质量分数为1.5%时, PI/MoS2/ZnS复合材料的摩擦学性能达到最优,相较于纯的PI,复合材料的摩擦系数和磨损率分别下降了15. 9%和34. 3%.   相似文献   

6.
采用超音速火焰喷涂(HVOF)和等离子体辅助化学气相沉积(PACVD)技术制备Cr3C2-NiCr/DLC复合涂层,对比研究其与单层DLC薄膜的微观结构、机械性能和不同载荷下的摩擦磨损行为. 结果表明:Cr3C2-NiCr/DLC复合涂层的结合力、承载力和摩擦学性能比单层DLC薄膜显著提高;HVOF制备的Cr3C2-NiCr中间承载层对表层DLC薄膜的微观结构和纳米硬度影响不大;Cr3C2-NiCr/DLC复合涂层在高载下的优异摩擦学性能归因于避免了高接触应力下发生塑性变形而导致DLC薄膜在摩擦磨损过程中的脆性断裂和剥落失效行为. 此外,在不同载荷下的摩擦过程中DLC薄膜和Cr3C2-NiCr/DLC复合涂层均未发生石墨化,其摩擦学行为主要取决于不同接触应力下的磨损机制变化和对偶球表面摩擦转移膜演化.   相似文献   

7.
通过“一步法”设计制备了端氨基超支化聚硅氧烷(HBPSi-NH2)-聚酰胺酸(PAA)粘结剂(HBPSi-PAA),然后利用喷涂法将其与固体润滑剂聚多巴胺包覆的球磨剥离六方氮化硼(PDA@exf-h-BN)纳米片喷涂在马口铁表面,经固化后制备出PDA@exf-h-BN/HBPSi-PI粘结固体润滑涂层. 采用MMUD-1B型摩擦磨损试验机和SDTA 85热失重分析仪分别对涂层的摩擦学性能和热性能进行了研究,并对其摩擦机理进行了初步探讨. 结果表明:当HBPSi-NH2和PDA@exf-h-BN的引入量分别为10.0%(质量分数)和12.0%(质量分数)时,粘结固体润滑涂层的摩擦系数稳定在0.12,相比纯PI涂层降低了约65.7%,耐磨寿命可达60 min,并且初始分解温度从319.8 ℃提升至545.6 ℃,残余质量达到74.6%,其优异的摩擦学性能和热稳定性主要归因于HBPSi-NH2和PDA@exf-h-BN的“软-硬”粒子协同减摩抗磨效应以及二者所赋予涂层优异的热稳定性.   相似文献   

8.
利用等离子喷涂工艺制备了含氧化物(MoO3-ZnO)的镍基复合涂层,通过UMT-3球盘式高温摩擦试验机评价了复合涂层在室温、400和800 ℃下的摩擦学性能,并采用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)以及拉曼光谱仪(Raman)等分析手段研究了涂层微观组织、物相组成以及磨损机理. 结果表明:在室温和400 ℃,复合涂层的摩擦系数和磨损率均高于Ni-5%Al金属基底,且随着氧化物含量的增加,润滑和耐磨性能均被削弱,主要表现为磨粒磨损和黏着磨损. 在800 ℃,MoO3和ZnO的添加可以有效改善复合涂层的摩擦性能,随着其含量的增加,摩擦系数变化不明显,而磨损率逐渐增加. 特别是添加5%MoO3和5%ZnO的复合涂层在800 ℃摩擦系数低至0.28,磨损率低至4.22×10?5 mm3/(N·m),其良好的高温润滑耐磨性能得益于摩擦表面二元氧化物(NiO、MoO3和ZnO)和三元氧化物(ZnMoO4和NiMoO4)的协同作用.   相似文献   

9.
通过大气等离子喷涂工艺制备了氧化钇稳定氧化锆(YSZ)涂层,采用真空浸渍技术和水热合成的方法,将含有反应物离子或分子的前驱体溶液引入YSZ涂层内部固有的微裂纹和孔洞等缺陷中,并在缺陷中原位合成了直径约78~111 nm的Ag/Ag2MoO4类球形纳米颗粒,首次制备出了YSZ-Ag/Ag2MoO4复合涂层. 摩擦试验结果表明:与YSZ涂层相比,YSZ-Ag/Ag2MoO4复合涂层由于在室温和600 ℃下形成了润滑层,抑制了YSZ涂层摩擦表面的脆性断裂和磨粒磨损,从而显著降低了涂层的摩擦系数和磨损率,有效提高了涂层的摩擦学性能.   相似文献   

10.
将石墨和硫酸钡按一定比例复合作为弱界面层,通过铺层-冷压-放电等离子烧结工艺制备了Al2O3/Graphite-BaSO4层状复合材料. 考察了复配润滑剂的组分对层状复合陶瓷在室温至800 ℃连续加热过程中自润滑性能的影响规律,并通过磨损表面分析探讨了其在宽温域下的协同润滑机制. 结果表明:通过复配在室温和中高温度段具有优异自润滑性能的固体润滑剂,并借助仿贝壳材料独特的层状结构特征,可有效改善氧化铝陶瓷在不同温度段的摩擦学性能,进而实现材料在较宽温度范围内的连续润滑. 基于润滑相组分优化的复合材料在室温至800 ℃温度范围内与Al2O3栓对摩时的摩擦系数可保持在0.28~0.48之间,比块体Al2O3陶瓷/Al2O3栓摩擦副的摩擦系数降低了近60%.   相似文献   

11.
人字闸门底枢长期在水下的低速重载下运行,易出现由磨损导致的故障,为此,三峡五级船闸的闸门已采用油脂和固体润滑剂混合润滑方式以减少摩擦磨损. 为了研究石墨、二硫化钼和聚四氟乙烯固体粉末对底枢摩擦副材料(45钢和锡青铜)摩擦学性能的影响,以三峡人字闸门底枢为研究对象,依据计算结果设计销/盘配对副面结构,在MMW-1A立式万能摩擦磨损试验机上开展磨损试验研究,并结合表面三维形貌测试和铁谱测试对摩擦磨损结果进行分析,结果表明:在试验条件下,聚四氟乙烯的摩擦系数最小,石墨次之,二硫化钼的摩擦系数最大;磨损量从小到大依次为石墨、聚四氟乙烯和二硫化钼;石墨润滑条件下磨损形式仅为单一的黏着磨损,二硫化钼和聚四氟乙烯润滑条件下磨损形式为黏着磨损和疲劳磨损,且石墨润滑产生的磨粒粒径要小于二硫化钼和聚四氟乙烯润滑产生的磨粒粒径,综上认为石墨是三者中性质较优的固体润滑剂. 在此基础上开展了石墨润滑下的13 h连续磨损试验,得到其摩擦系数和磨损量的变化规律,为人字闸门底枢摩擦副的固体润滑设计提供理论依据.   相似文献   

12.
对比考察了炭纤维增强聚四氟乙烯(PTFE)复合材料在干摩擦和水润滑条件下的摩擦磨损性能,并探讨了其磨损机理。结果表明:在水润滑条件下,纤维增强PTFE复合材料的摩擦系数和磨损率均明显比干摩擦下的低,水起到了润滑和冷却作用;复合材料磨损表面可见明显的裸露纤维及纤维局部磨平,无明显微观裂纹,基体和纤维结合较好,磨损表面存在转移自偶件的铁,表现出犁削磨损特征;在干摩擦下,复合材料磨损表面存在大量的微观断裂裂纹,纤维发生断裂和破碎,表现出疲劳磨损特征。  相似文献   

13.
采用化学还原法成功制备出NbSe2/Ag纳米复合材料,即在NbSe2纳米片表面沉积1层纳米Ag颗粒. 采用UMT-2摩擦磨损试验机以及扫描电子显微镜(SEM)研究了NbSe2/Ag纳米复合材料添加到煤矿机械机用润滑油中的摩擦学行为. 结果表明:相比于纳米Ag颗粒和NbSe2,NbSe2/Ag纳米复合材料添加到润滑油中更加有效地改善了润滑油的润滑承载效果. NbSe2/Ag纳米复合材料所表现出最优良的摩擦学行为. 原因主要可能在于4个方面:第一,根据理论计算得出NbSe2、Ag和NbSe2/Ag纳米复合材料产生滑移的最大抗剪切强度按从小到大顺序排列为NbSe2/Ag纳米复合材料、Ag、NbSe2。NbSe2/Ag纳米复合材料抗剪切强度最小,润滑效果最好;第二,NbSe2/Ag纳米复合材料中的NbSe2由于纳米Ag负载相比于纯NbSe2具有更好的分散性,更利于形成完整均匀的润滑膜;第三,Ag质软润滑且弹性模量小,NbSe2/Ag纳米复合材料受到摩擦热以及剪切作用形成的润滑膜由于Ag的存在提高了脆性破坏能力,使得润滑膜在摩擦副上硬凸点的刮擦作用下不易破裂;第四,部分纳米Ag球状颗粒可能存在接触界面上有效的滚动,起到“微轴承”的作用从而降低摩擦系数. 然而,润滑油的润滑效果与所添加的NbSe2/Ag纳米复合材料含量并非呈现正相关关系,而是随着添加含量的增加呈现先降低后增加的趋势,在质量分数为1.5%时,效果最佳.   相似文献   

14.
对比研究了?100~100 ℃范围内聚四氟乙烯(PTFE)及三氧化二铝/聚四氟乙烯(Al2O3/PTFE)复合材料的摩擦学性能. 研究结果表明,PTFE因为蠕变,在升温过程中摩擦系数逐步降低,磨损率逐步升高. 而引入Al2O3填料会显著影响PTFE的摩擦学行为,Al2O3/PTFE的摩擦系数普遍比PTFE高,而磨损率比PTFE低. 摩擦学机理表明,滑动过程中形成的摩擦膜是决定摩擦学行为的关键因素. 这对极端工况条件下高分子复合材料的设计具有重要的指导意义.   相似文献   

15.
传统的油基润滑剂在使用过程中通常存在冷却性能差,易造成环境污染等问题,近年来绿色环保的水基润滑逐渐受到科学家们的关注. 水由于自身黏度低且易挥发等特点,其作为润滑剂时润滑效果不佳,因此亟待发展高效的水基润滑添加剂来改善其摩擦磨损性能. 在本文中,作者综述了近年来石墨烯基纳米材料的功能化改性及其作为水基润滑添加剂的最新研究进展,总结了其在摩擦过程中的润滑机理,并对目前石墨烯水基润滑添加剂存在的问题及今后重点研究内容进行了展望.   相似文献   

16.
丁腈橡胶(NBR)是一种优异的水润滑减摩耐磨材料,但硬质颗粒的介入对其产生较大的材料损失. 利用硅烷偶联剂TESPT改性纳米SiO2颗粒,并填充至NBR基体,获得改性纳米SiO2/NBR标记为NBR-1. 改性后的纳米SiO2颗粒在NBR基体中均匀分散. 将纳米SiO2颗粒、微米SiO2颗粒填充至NBR基体标记为NBR-2、NBR-3作为对照组. 三种复合材料在武汉理工大学自制的SSB-100型摩擦磨损试验机上进行沙水润滑工况下的摩擦磨损试验. 结果表明:三种复合材料在沙水工况下摩擦系数均随载荷和转速的增加而下降. 在相同的载荷和转速条件下,NBR-1的摩擦性能最为优异. 对比三种材料的耐沙磨损性能,沙粒对NBR表面的磨损主要为犁沟磨损,NBR-2和NBR-3材料磨损量远远大于NBR-1,NBR-1材料更适用于含沙水区域.   相似文献   

17.
采用碳酸钙纳米颗粒与全氟聚醚型超分子凝胶复合得到了一种新型的纳米颗粒复合超分子凝胶润滑剂. 超分子凝胶具有错综复杂的网络结构,有效地提高了碳酸钙纳米颗粒在全氟聚醚润滑油中的分散稳定性. 此外,碳酸钙纳米颗粒作为添加剂极大地提高了超分子凝胶的润滑性能,使其表现出较好的耐高温性能,以及较高的承载力. 采用差式扫描量热仪、热重分析仪和流变分析仪对该复合润滑剂的热力学性能进行表征,结果显示该复合润滑剂具有很好的热稳定性以及较好的力学性能. 最后,通过X射线光电子能谱(XPS)对其摩擦机理进行表征,结果表明碳酸钙纳米颗粒复合超分子凝胶润滑剂优异的摩擦学性能可归因于碳酸钙纳米颗粒在摩擦副表面形成了易剪切的薄膜,以及小尺寸的纳米粒子在摩擦过程中对摩擦表面进行的自修复效应.   相似文献   

18.
采用高能球磨结合喷雾造粒技术制备微米级球形Ni3Al基复合粉末,利用等离子喷涂方法制备涂层后考察其在不同载荷(5、10和20 N)下宽温域内(25~800 ℃)的摩擦学性能. 用SEM、EDS和Raman分析磨痕、对偶销和磨屑的微观组织和物相组成,对比分析载荷对摩擦磨损机理的影响. 结果表明:25~200 ℃时,载荷增加促进了润滑相的“析出效应”,但载荷增至20 N时涂层发生塑性变形产生“封闭效应”,使涂层摩擦系数和磨损率随载荷增加呈先减后增的趋势;400~600 ℃时,载荷增加导致的摩擦热加速了氧化进程,降低磨损表面剪切强度,从而使摩擦系数和磨损率持续降低;800 ℃时,磨损表面形成富含NiCr2O4、Ag2MoO4和NiO的连续、光滑釉质层,但在20 N时局部过高的接触应力使润滑膜破裂而发生剥落,导致摩擦学性能下降.   相似文献   

19.
为了提高Ti6Al4V合金的耐磨减摩性能,在其表面利用激光熔覆技术制备出两种不同配比的Ti3SiC2/Ni60复合涂层,分别是5%Ti3SiC2+Ni60(N1)和10%Ti3SiC2+Ni60(N2)(均为质量分数),研究了这两种涂层在室温、300和600 ℃下的微观组织、显微硬度、摩擦学性能表现及相关磨损机理. 结果表明:涂层主要由硬质相TiC/TiB/TixNiy,γ-Ni固溶体连续相和润滑相Ti3SiC2组成. N1、N2涂层的显微硬度均为基体(350HV0.5)的3倍左右,分别为1 101.90HV0.5 和1 037.23HV0.5 ,在室温、300和600 ℃下的摩擦系数分别为0.39、0.35、0.30和0.41、0.45、0.44,均小于基体的摩擦系数(0.51、0.49、0.47). N1、N2涂层在室温、300和600 ℃下的磨损率分别为3.07×10?5、1.47×10?5、0.77×10?5 mm3/(N·m)和1.45×10?5、0.96×10?5、0.62×10?5 mm3/(N·m),均远小于基体[35.96×10?5、25.99×10?5、15.18×10?5mm3/(N·m)]. 在本文中Ti3SiC2提高了Ti6Al4V合金的耐磨减摩性能,使得N1涂层表现出更好的减摩性能,N2涂层表现出更好的耐磨性能. 室温下,磨粒磨损、塑性变形以及轻微的黏着磨损为两种涂层的主要磨损机理;300 ℃时,塑性变形、氧化磨损和黏着磨损是N1涂层的对应机理,600 ℃时出现了三体磨粒磨损;在300和600 ℃时,黏着磨损、氧化磨损及磨粒磨损为N2涂层的主要磨损机理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号