首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   1篇
力学   2篇
数学   2篇
  2023年   1篇
  2021年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
为了提高Ti6Al4V合金的耐磨减摩性能,在其表面利用激光熔覆技术制备出两种不同配比的Ti3SiC2/Ni60复合涂层,分别是5%Ti3SiC2+Ni60(N1)和10%Ti3SiC2+Ni60(N2)(均为质量分数),研究了这两种涂层在室温、300和600 ℃下的微观组织、显微硬度、摩擦学性能表现及相关磨损机理. 结果表明:涂层主要由硬质相TiC/TiB/TixNiy,γ-Ni固溶体连续相和润滑相Ti3SiC2组成. N1、N2涂层的显微硬度均为基体(350HV0.5)的3倍左右,分别为1 101.90HV0.5 和1 037.23HV0.5 ,在室温、300和600 ℃下的摩擦系数分别为0.39、0.35、0.30和0.41、0.45、0.44,均小于基体的摩擦系数(0.51、0.49、0.47). N1、N2涂层在室温、300和600 ℃下的磨损率分别为3.07×10?5、1.47×10?5、0.77×10?5 mm3/(N·m)和1.45×10?5、0.96×10?5、0.62×10?5 mm3/(N·m),均远小于基体[35.96×10?5、25.99×10?5、15.18×10?5mm3/(N·m)]. 在本文中Ti3SiC2提高了Ti6Al4V合金的耐磨减摩性能,使得N1涂层表现出更好的减摩性能,N2涂层表现出更好的耐磨性能. 室温下,磨粒磨损、塑性变形以及轻微的黏着磨损为两种涂层的主要磨损机理;300 ℃时,塑性变形、氧化磨损和黏着磨损是N1涂层的对应机理,600 ℃时出现了三体磨粒磨损;在300和600 ℃时,黏着磨损、氧化磨损及磨粒磨损为N2涂层的主要磨损机理.   相似文献   
2.
本文研究了由花药诱导的72株小麦单倍体的减数分裂过程。阐述了减数分裂各期染色体的行为,特别是二价体和单价体在中期Ⅰ和中期Ⅱ的分布。根据单倍体花粉母细胞减数分裂染色体行为的特点,讨论了同源染色体间的交换、染色体向赤道面排列的机制和次级联会的原因等问题。  相似文献   
3.
本文对72个当代花粉植株(H_1)花粉母细胞的染色体变异情况进行了研究,并探讨了其染色体的稳定性问题.根据染色体倍性情况,72个小麦花粉植株可分为:3X,6X,8X.6X-2(缺体)和混倍体等五类. 在72个花粉植株中,87.5%为单倍体和二倍体.这和文献[1]的结果十分相近.同时观察到二倍体的染色体构型稳定,因此,花药培养方法可直接应用于育种工作. 在获得的近10%的异倍体和非整倍体植株中,缺体、八倍体以及混倍体等植株有的结了种子.文中还讨论了这些异倍体和非整倍体的产生和利用问题,认为花药培养方法可能获得染色体发生变异的新类型.  相似文献   
4.
基于分子动力学模拟建立金刚石结构粗糙磨粒球与Ni60/10%Cu (C1)和Ni60/20%Cu (C2)铜镍合金滑动摩擦结构模型,通过探究铜镍合金在金刚石磨粒不同摩擦深度下滑动摩擦行为,结合合金的磨损形貌、磨损原子数目及分布、摩擦力和亚表面损伤对合金纳米尺度下磨损机理进行了研究.结果表明:在摩擦过程中,合金磨损原子首先堆积在磨粒前方,随着滑动摩擦的进行,当压入深度为10?时,磨损原子与磨粒之间黏附力较小,磨损原子流向磨痕两侧,当压入深度为20?时,磨损原子数量增加,增加的磨损原子主要堆积在磨粒前方,共同对合金进行磨损.随压入深度的增加,合金在摩擦过程中的位错密度上升,合金亚表面损伤程度提高,但在相同压入深度下,C2合金平均位错密度大于C1合金,C1合金的亚表面质量优于C2合金,这表明摩擦深度是影响合金亚表面质量的重要因素,且Cu原子数目增加会提高合金在纳米尺度下摩擦过程中亚表面损伤.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号