首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
采用等离子喷涂法制备Ni3Al基涂层,分别以316L和Al2O3为摩擦偶件,考察25~800 ℃内摩擦偶件材料对涂层摩擦学行为的影响. 结果表明:在软金属Ag析出、BaF2/CaF2脆-塑性转变和摩擦氧化协同作用下,随温度升高Ni3Al/316L和Ni3Al/Al2O3摩擦副的摩擦系数和磨损率具有一致的变化规律,且Ni3Al/Al2O3摩擦副性能更佳. 25 ℃时,涂层与316L对摩时发生黏着磨损和磨粒磨损,而与高硬度的Al2O3对摩时发生脆性剥层和磨粒磨损,使涂层表面更粗糙导致较高的摩擦系数;Al2O3热导率较低,高接触应力作用下产生的大量摩擦热不能及时耗散,剥落材料贮存于剥落坑或黏附于磨损表面,使Ni3Al/Al2O3摩擦副具有较低的磨损率. 200~600 ℃时,高硬度的Al2O3对涂层的犁削作用较强导致Ni3Al/Al2O3摩擦副具有高的摩擦系数;而涂层在Al2O3碾压下发生塑性变形,使其具有较低的磨损率. 800 ℃时,高硬度的Al2O3促使磨损表面形成高氧化物含量的润滑膜,使Ni3Al/Al2O3摩擦副具有低的摩擦系数和高的磨损率.   相似文献   

2.
将石墨和硫酸钡按一定比例复合作为弱界面层,通过铺层-冷压-放电等离子烧结工艺制备了Al2O3/Graphite-BaSO4层状复合材料. 考察了复配润滑剂的组分对层状复合陶瓷在室温至800 ℃连续加热过程中自润滑性能的影响规律,并通过磨损表面分析探讨了其在宽温域下的协同润滑机制. 结果表明:通过复配在室温和中高温度段具有优异自润滑性能的固体润滑剂,并借助仿贝壳材料独特的层状结构特征,可有效改善氧化铝陶瓷在不同温度段的摩擦学性能,进而实现材料在较宽温度范围内的连续润滑. 基于润滑相组分优化的复合材料在室温至800 ℃温度范围内与Al2O3栓对摩时的摩擦系数可保持在0.28~0.48之间,比块体Al2O3陶瓷/Al2O3栓摩擦副的摩擦系数降低了近60%.   相似文献   

3.
采用UMT-3高温摩擦试验机评价了氩气气氛800℃热处理等离子喷涂NiAl-Bi2O3涂层在室温至800℃的摩擦磨损性能.通过分析热处理前后涂层及其摩擦表/界面的组成和微结构演变,首次研究了热处理NiAl-Bi2O3涂层的高低温润滑相(NiBi、Bi2O3和NiO)自适应再生机制及宽温域循环摩擦学行为.结果表明:热处理能使涂层中产生弥散增强的Al2O3和具有中低温润滑性的金属间化合物NiBi,提高了涂层室温至800℃的减摩抗磨性能,尤其使涂层在400℃的摩擦系数和磨损率分别从0.39和35.56×10-5 mm3/(N·m)降至0.28和8.53×10-5 mm3/(N·m);在800℃时,接触表面通过摩擦氧化再次产生润滑相(Bi2O3、NiO),并与增强相Al2  相似文献   

4.
采用分子动力学模拟的方法研究氮化碳(C3N4)对聚四氟乙烯(PTFE)摩擦学性能的影响. 首先,建立了纯聚四氟乙烯和氮化碳/聚四氟乙烯复合材料两个无定型模型,优化后分别计算其机械性能. 模拟结果显示:加入氮化碳后,聚四氟乙烯的杨氏模量和剪切模量分别提高了218% 和141%. 然后为了计算摩擦学性能,建立了与铜对摩的摩擦模型,对金属铜层施加一定的载荷和速度进行滑动磨损. 模拟结果显示:纯聚四氟乙烯的摩擦系数为0.144,磨损率为27.6%;氮化碳/聚四氟乙烯基体的摩擦系数为0.118,未见明显的磨损. 最后通过提取摩擦界面温度、原子运动速度、原子相对浓度、径向分布函数和结合能等数据,从原子尺度揭示了氮化碳对聚四氟乙烯摩擦学性能的作用机制.   相似文献   

5.
聚合物复合材料由于其自润滑特性和化学稳定性高等优势,在汽车和装备领域运动机构的摩擦学设计中发挥着越来越重要的作用.本研究系统考察了氟化钙(CaF2)颗粒的加入对聚四氟乙烯(PTFE)和碳纤维(CF)增强PTFE材料摩擦学性能的影响规律.研究发现,在PTFE中添加CaF2颗粒可明显改善基体材料的抗磨性能.尤其,与分别填充有CaF2陶瓷颗粒或CF的PTFE材料相比,同时填充CaF2和CF的PTFE多元复合材料的耐磨性能分别提高了11.1和2.47倍. CF与CaF2表现出显著的协同抗磨作用,同时该多元复合材料表现出极低的特征磨损率[8.9×10-7 mm3/(N·m)]和优异的自润滑性能.通过多种表征手段深入分析了金属对偶表面生长转移膜的微观结构以及界面的物理化学反应和产物.结果表明,PTFE发生摩擦化学反应并生成的羧酸基团,随后与CF研磨产生的石墨碳、破碎的CaF2以及其摩擦化学反应产物碳酸钙(CaCO3...  相似文献   

6.
通过真空热压烧结方法制备Ni/Ti2AlC复合材料,并对材料进行热处理,考察了两种不同热处理工艺对复合材料的显微组织和室温及800 ℃下摩擦学性能的影响. 结果表明:烧结后,Ni/10%Ti2AlC复合材料包含Ni基固溶体、TiCx、Ni3Al和少量Al2O3,而Ni/50%Ti2AlC主要由Ni2TiAl、TiCx、Ti3NiAl2C和少量Al2O3组成. 分别于1 200和1 350 ℃热处理16 h后,Ni/10%Ti2AlC中的Ni3Al相和Ni/50%Ti2AlC中的Ti3NiAl2C相消失. 热处理导致TiCx相的生长,复合材料显微组织得到优化,同时材料保持了高度致密性. 热处理后,两种复合材料的维氏硬度下降,这主要归结于Ni3Al强化相的消失和碳化物的长大. 随着热处理温度的升高,室温下复合材料的磨损率降低,这主要归结于热处理优化了显微组织,提高了两相结合强度,进而抑制了TiCx颗粒的脱出,减少了磨粒磨损的发生;800 ℃摩擦条件下,热处理前后,复合材料均表现出较低的摩擦系数和磨损率,这主要归结于高温下磨损表面形成的由TiO2、NiO和NiTiO3组成的润滑膜所起到的减摩抗磨作用,此外,热处理使得显微组织更均匀,更有利于磨损表面TiO2和NiTiO3润滑相的形成,对摩擦学性能有利.   相似文献   

7.
首先采用高温固相反应法合成了由纳米球状结构紧密堆积的微米级粉体Ag2Nb4O11,然后通过粉末冶金技术制备了添加铌酸银(Ag2Nb4O11)的NiAl基复合材料(NABO20,NiAl-20%Ag2Nb4O11),考察其对复合材料显微结构、力学及摩擦学性能的影响. 结果表明:热压烧结过程中,Ag2Nb4O11发生高温分解及与C发生氧化还原反应,形成了NbC和Ag相. 铌酸银(Ag2Nb4O11)的添加使得复合材料的密度略有增加,并且显著改善了NiAl基复合材料的显微硬度. 在高温摩擦条件下(800 ℃),由于NABO20磨损表面和Al2O3对偶球表面均形成完整光滑的润滑膜(Nb2O5、Al2O3、Ag2Nb4O11、AgNbO3和AgNb3O8),两层膜的存在阻隔了对偶球和复合材料的直接接触,抑制了磨损进程,从而有效地提高了复合材料的耐磨性能.   相似文献   

8.
通过直流磁控溅射(DCMS)复合高功率脉冲磁控溅射(HiPIMS)技术制备了VAlN/VAlN-Ag复合涂层,调控HiPIMS靶功率控制Ag质量分数变化范围(11.4%、19.8%、24.5%),探究了涂层在25、300和650℃温度下的摩擦学性能.在室温摩擦条件下,3种涂层的摩擦系数均较高,当温度升高至300和650℃时,摩擦系数随Ag含量增加而降低,高Ag含量(质量分数24.5%)涂层摩擦系数最低,分别为0.45和0.23.磨损率随温度升高而增加,宽温域环境中,低Ag含量的S1 (Ag质量分数为11.4%)涂层具有最优的力学性能和最低的磨损率,使复合涂层在宽温域内表现出良好的摩擦学性能.复合涂层的物相结构、元素价态和化学键在中低温摩擦环境中无明显变化;经650℃摩擦试验后,涂层表面发生摩擦化学反应,V和Ag元素的价态升高,生成层状结构的AgVO3和Ag3VO4高温润滑相,有效降低涂层的摩擦系数.高温摩擦过程中伴随着元素扩散,涂层内部微结构演变成致密的Al2O3层包裹钒酸银润...  相似文献   

9.
本文中研究制备了聚酰亚胺(PI)多元纳米复合材料,系统考察了多元纳米复合材料在干摩擦条件下的摩擦学性能,并通过扫描电子显微镜(SEM)、光学显微镜(OM)、X射线光电子能谱(XPS)、红外光谱(ATR-FTIR)和拉曼光谱(Raman)对转移膜的微观形貌和化学成分进行系统分析.摩擦学试验结果表明,与传统碳纤维/石墨(CF/Gr)增强的聚酰亚胺复合材料相比,凹凸棒石(ATP)增强的聚酰亚胺多元纳米复合材料具有更佳的减摩抗磨性,其磨损率降低约69%.结果分析表明在摩擦热和摩擦应力作用下,ATP的摩擦化学产物MgO、SiOx和Al2O3与PI分子链段以及石墨碳在摩擦界面发生摩擦烧结,在金属对偶表面形成含有陶瓷微晶的高质量转移膜,显著提升PI复合材料在干摩擦条件下的减摩抗磨性能.本研究为制备耐高温和长寿命高端摩擦部件提供研究基础.  相似文献   

10.
a-C:H涂层因具有高硬度、低摩擦系数及良好的化学惰性等性能,使其作为表面防护材料具有广泛的应用前景,而涂层中的H含量和sp2C/sp3C比值是影响其力学及摩擦学性能的重要因素. 本研究中采用非平衡磁控溅射技术在9Cr18钢表面制备了a-C:H涂层,对比研究了前驱体组成对不同结构含H碳膜的氢含量、微观结构、力学性能和摩擦学性能的影响. 结果表明:增大C2H2/Ar流量比,涂层的生长率及H含量逐渐增大,但致密性降低. 由于涂层中C-H键及致密性的变化,a-C:H涂层的硬度和弹性模量随C2H2/Ar流量比的增大而逐渐减小,但结合强度却先增大后降低. 当C2H2/Ar流量比低于4:3时,涂层表现出良好的减摩耐磨性能,当C2H2/Ar流量比高于4:3时,涂层的摩擦系数和磨损率出现了急增的现象. 总体而言,a-C:H涂层的摩擦系数和磨损率随C2H2/Ar流量比的增加呈现先增大后降低的趋势. 由于H原子的钝化作用及涂层力学性能的变化,使a-C:H涂层的磨损机制由磨粒磨损和黏着磨损变为磨粒磨损. 当C2H2/Ar流量比为1:1时,a-C:H涂层具有最低的摩擦系数(约为0.1)和磨损率[8.0×10?8 mm3/(N·m)],表现出最佳的力学及摩擦学性能,这种性能的变化与涂层中的H含量和sp2C/sp3C比密切相关.   相似文献   

11.
利用等离子喷涂工艺制备了含氧化物(MoO3-ZnO)的镍基复合涂层,通过UMT-3球盘式高温摩擦试验机评价了复合涂层在室温、400和800 ℃下的摩擦学性能,并采用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)以及拉曼光谱仪(Raman)等分析手段研究了涂层微观组织、物相组成以及磨损机理. 结果表明:在室温和400 ℃,复合涂层的摩擦系数和磨损率均高于Ni-5%Al金属基底,且随着氧化物含量的增加,润滑和耐磨性能均被削弱,主要表现为磨粒磨损和黏着磨损. 在800 ℃,MoO3和ZnO的添加可以有效改善复合涂层的摩擦性能,随着其含量的增加,摩擦系数变化不明显,而磨损率逐渐增加. 特别是添加5%MoO3和5%ZnO的复合涂层在800 ℃摩擦系数低至0.28,磨损率低至4.22×10?5 mm3/(N·m),其良好的高温润滑耐磨性能得益于摩擦表面二元氧化物(NiO、MoO3和ZnO)和三元氧化物(ZnMoO4和NiMoO4)的协同作用.   相似文献   

12.
利用等离子体增强化学气相沉积法(PECVD)在钛合金TC4表面制备了梯度结构DLC薄膜,并研究了DLC薄膜微观形貌结构、力学性能以及不同对偶球材料(包括4种陶瓷与4种金属材料)对其摩擦学性能的影响. 结果表明:所制备的梯度结构DLC薄膜表面相对光滑平坦且与基底结合紧密,具有良好的力学性能;对于陶瓷球/DLC配副,在摩擦过程中由于对偶球硬度较大且耐磨,从而在陶瓷球表面易于形成稳定的碳质转移膜,SiC/DLC、Si3N4/DLC和ZrO2/DLC表现为轻微的磨粒磨损和黏着磨损,而Al2O3球表面的碳元素含量较高使得DLC薄膜虽然发生破损和剥落但其摩擦系数仍保持在较低水平;金属球/DLC与陶瓷/DLC相比较,由于金属对偶球硬度较低,在摩擦过程中碳质转移膜无法稳定地覆盖在金属球,引起较高的摩擦系数,Al/DLC主要表现为严重的磨粒磨损,而Brass/DLC、304SS/DLC和GCr15/DLC主要为轻微的磨粒磨损或黏着磨损;SiC/DLC、ZrO2/DLC、304SS/DLC和GCr15/DLC的DLC薄膜均具有较低的摩擦系数和磨损率且对偶球的磨斑较小,故其为较合理的摩擦副. 赫兹接触分析表明,陶瓷/DLC中除了ZrO2/DLC,平均摩擦系数和计算接触半径的变化趋势是一致的,而在金属/DLC中并未发现这一规律.   相似文献   

13.
采用粉末冶金技术制备了纳米SiC陶瓷颗粒(0.0%、1.0%、2.2%和3.4%,质量分数,后面未作特殊说明,均为质量分数)强化的CoCrMo基高温抗磨复合材料,对复合材料的相组成及高温摩擦学性能进行了系统性研究. 在室温至1 000 ℃范围内利用球-盘式高温摩擦试验机测试了材料的高温摩擦学性能. 结果表明:复合材料的基体主要由γ (fcc)和ε (hcp)合金相构成,加入纳米SiC后复合材料出现了MoCr相,这有利于复合材料硬度的提高;纳米SiC提高了复合材料的硬度,同时降低了复合材料的密度;摩擦系数与纳米SiC的含量和温度相关,摩擦系数随纳米SiC含量的增加而增大,室温至800 ℃的摩擦系数整体呈下降趋势,1 000 ℃时含2.2%和3.4% SiC的复合材料具有较低的摩擦系数;高温环境下复合材料的抗磨损性能随纳米SiC含量的增加而显著提高;复合材料的磨损机理在不同温度下存在差异,随着温度升高,磨损机理逐渐由磨粒磨损和塑性变形转变为氧化磨损. 室温至1 000 ℃范围内CoCrMo-2.2% SiC具有较优异的高温抗磨损性能,这主要归因于复合材料的高硬度和磨损表面完整的氧化物润滑层.   相似文献   

14.
利用中频磁控溅射系统制备a-C:H润滑薄膜,并使用球-盘摩擦机考察了空气和干燥氮气(N2)氛围中a-C:H薄膜摩擦行为的差异,讨论了随着摩擦时间增加,薄膜上磨痕及Al2O3对偶球上转移膜的结构变化对摩擦行为的影响. 试验结果显示:a-C:H薄膜在干燥氮气中摩擦具有比在空气中更低的摩擦系数和更长的磨损寿命. 微观结构分析表明,转移膜可以起到降低摩擦的作用,在干燥氮气中,随着摩擦进行,Al2O3对偶球上逐渐形成具有典型DLC特征的碳转移膜并稳定地存在,这是摩擦性能进一步提高的原因. 此外,在干燥氮气中摩擦,磨痕表面和对偶球上转移膜表面结构均趋于“石墨化”. 上述二者的共同作用使得a-C:H薄膜在N2环境下比在空气中更低的摩擦磨损.   相似文献   

15.
采用高能球磨结合喷雾造粒技术制备微米级球形Ni3Al基复合粉末,利用等离子喷涂方法制备涂层后考察其在不同载荷(5、10和20 N)下宽温域内(25~800 ℃)的摩擦学性能. 用SEM、EDS和Raman分析磨痕、对偶销和磨屑的微观组织和物相组成,对比分析载荷对摩擦磨损机理的影响. 结果表明:25~200 ℃时,载荷增加促进了润滑相的“析出效应”,但载荷增至20 N时涂层发生塑性变形产生“封闭效应”,使涂层摩擦系数和磨损率随载荷增加呈先减后增的趋势;400~600 ℃时,载荷增加导致的摩擦热加速了氧化进程,降低磨损表面剪切强度,从而使摩擦系数和磨损率持续降低;800 ℃时,磨损表面形成富含NiCr2O4、Ag2MoO4和NiO的连续、光滑釉质层,但在20 N时局部过高的接触应力使润滑膜破裂而发生剥落,导致摩擦学性能下降.   相似文献   

16.
利用高能球磨和真空热压烧结方法制备了添加Ta和Ag的镍基复合材料. 考察了复合材料在宽温域范围内的摩擦磨损性能和力学性能,利用SEM、XRD等表征分析其物相组成、磨损机理及断裂机制. 结果表明: 热压烧结过程中,Ta与石墨模具中的C反应生成TaC陶瓷相并在基体中弥散分布;Ta、Ag的加入降低了材料的摩擦磨损,NiCrMoAl-Ta-Ag复合材料实现了在室温~800 ℃的连续润滑,室温时Ag提供润滑作用,中温时由磨屑和Ag形成局部润滑膜,800 ℃时磨损表面形成了含氧化物、钼酸银和Ag的润滑膜. 加入Ta极大提高了材料的机械性能,NiCrMoAl-Ta合金在室温~1 000 ℃具有优异的机械性能,归因于原位生成的TaC和Al2O3陶瓷相的弥散强化;材料的断裂机制随温度升高由微孔聚集型断裂转变为以微孔聚集型和氧化断裂为主的断裂.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号