首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
首先采用高温固相反应法合成了由纳米球状结构紧密堆积的微米级粉体Ag2Nb4O11,然后通过粉末冶金技术制备了添加铌酸银(Ag2Nb4O11)的NiAl基复合材料(NABO20,NiAl-20%Ag2Nb4O11),考察其对复合材料显微结构、力学及摩擦学性能的影响. 结果表明:热压烧结过程中,Ag2Nb4O11发生高温分解及与C发生氧化还原反应,形成了NbC和Ag相. 铌酸银(Ag2Nb4O11)的添加使得复合材料的密度略有增加,并且显著改善了NiAl基复合材料的显微硬度. 在高温摩擦条件下(800 ℃),由于NABO20磨损表面和Al2O3对偶球表面均形成完整光滑的润滑膜(Nb2O5、Al2O3、Ag2Nb4O11、AgNbO3和AgNb3O8),两层膜的存在阻隔了对偶球和复合材料的直接接触,抑制了磨损进程,从而有效地提高了复合材料的耐磨性能.   相似文献   

2.
采用高能球磨结合喷雾造粒技术制备微米级球形Ni3Al基复合粉末,利用等离子喷涂方法制备涂层后考察其在不同载荷(5、10和20 N)下宽温域内(25~800 ℃)的摩擦学性能. 用SEM、EDS和Raman分析磨痕、对偶销和磨屑的微观组织和物相组成,对比分析载荷对摩擦磨损机理的影响. 结果表明:25~200 ℃时,载荷增加促进了润滑相的“析出效应”,但载荷增至20 N时涂层发生塑性变形产生“封闭效应”,使涂层摩擦系数和磨损率随载荷增加呈先减后增的趋势;400~600 ℃时,载荷增加导致的摩擦热加速了氧化进程,降低磨损表面剪切强度,从而使摩擦系数和磨损率持续降低;800 ℃时,磨损表面形成富含NiCr2O4、Ag2MoO4和NiO的连续、光滑釉质层,但在20 N时局部过高的接触应力使润滑膜破裂而发生剥落,导致摩擦学性能下降.   相似文献   

3.
利用激光熔覆技术在45钢表面制备了纳米Sm2O3增强TiC/Co基复合涂层,系统研究了纳米Sm2O3对TiC/Co基复合涂层宏观形貌、微观组织和耐磨性能的影响. 结果表明:纳米Sm2O3增强TiC/Co基复合涂层主要由γ-Co、Cr23C6、TiC、Co3Ti和Fe7Sm相组成. 纳米Sm2O3增强TiC/Co基复合涂层呈现出与基体形成更加优良的冶金结合和优良的润湿性,显微组织明显细小均匀. 随着纳米Sm2O3含量增加,复合涂层的显微硬度和耐磨性能均先增加后降低,当纳米Sm2O3质量分数为1.5%时,复合涂层的显微硬度和耐磨性能分别提高了10.1%和17.1%. 添加纳米Sm2O3的复合涂层的磨损机理均为磨粒磨损. 应用多元统计分析的结果也表明纳米Sm2O3对TiC/Co基合金涂层有着显著影响.   相似文献   

4.
利用等离子喷涂工艺制备了含氧化物(MoO3-ZnO)的镍基复合涂层,通过UMT-3球盘式高温摩擦试验机评价了复合涂层在室温、400和800 ℃下的摩擦学性能,并采用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)以及拉曼光谱仪(Raman)等分析手段研究了涂层微观组织、物相组成以及磨损机理. 结果表明:在室温和400 ℃,复合涂层的摩擦系数和磨损率均高于Ni-5%Al金属基底,且随着氧化物含量的增加,润滑和耐磨性能均被削弱,主要表现为磨粒磨损和黏着磨损. 在800 ℃,MoO3和ZnO的添加可以有效改善复合涂层的摩擦性能,随着其含量的增加,摩擦系数变化不明显,而磨损率逐渐增加. 特别是添加5%MoO3和5%ZnO的复合涂层在800 ℃摩擦系数低至0.28,磨损率低至4.22×10?5 mm3/(N·m),其良好的高温润滑耐磨性能得益于摩擦表面二元氧化物(NiO、MoO3和ZnO)和三元氧化物(ZnMoO4和NiMoO4)的协同作用.   相似文献   

5.
通过直流磁控溅射(DCMS)复合高功率脉冲磁控溅射(HiPIMS)技术制备了VAlN/VAlN-Ag复合涂层,调控HiPIMS靶功率控制Ag质量分数变化范围(11.4%、19.8%、24.5%),探究了涂层在25、300和650℃温度下的摩擦学性能.在室温摩擦条件下,3种涂层的摩擦系数均较高,当温度升高至300和650℃时,摩擦系数随Ag含量增加而降低,高Ag含量(质量分数24.5%)涂层摩擦系数最低,分别为0.45和0.23.磨损率随温度升高而增加,宽温域环境中,低Ag含量的S1 (Ag质量分数为11.4%)涂层具有最优的力学性能和最低的磨损率,使复合涂层在宽温域内表现出良好的摩擦学性能.复合涂层的物相结构、元素价态和化学键在中低温摩擦环境中无明显变化;经650℃摩擦试验后,涂层表面发生摩擦化学反应,V和Ag元素的价态升高,生成层状结构的AgVO3和Ag3VO4高温润滑相,有效降低涂层的摩擦系数.高温摩擦过程中伴随着元素扩散,涂层内部微结构演变成致密的Al2O3层包裹钒酸银润...  相似文献   

6.
采用超音速火焰喷涂(HVOF)和等离子体辅助化学气相沉积(PACVD)技术制备Cr3C2-NiCr/DLC复合涂层,对比研究其与单层DLC薄膜的微观结构、机械性能和不同载荷下的摩擦磨损行为. 结果表明:Cr3C2-NiCr/DLC复合涂层的结合力、承载力和摩擦学性能比单层DLC薄膜显著提高;HVOF制备的Cr3C2-NiCr中间承载层对表层DLC薄膜的微观结构和纳米硬度影响不大;Cr3C2-NiCr/DLC复合涂层在高载下的优异摩擦学性能归因于避免了高接触应力下发生塑性变形而导致DLC薄膜在摩擦磨损过程中的脆性断裂和剥落失效行为. 此外,在不同载荷下的摩擦过程中DLC薄膜和Cr3C2-NiCr/DLC复合涂层均未发生石墨化,其摩擦学行为主要取决于不同接触应力下的磨损机制变化和对偶球表面摩擦转移膜演化.   相似文献   

7.
采用等离子喷涂法制备Ni3Al基涂层,分别以316L和Al2O3为摩擦偶件,考察25~800 ℃内摩擦偶件材料对涂层摩擦学行为的影响. 结果表明:在软金属Ag析出、BaF2/CaF2脆-塑性转变和摩擦氧化协同作用下,随温度升高Ni3Al/316L和Ni3Al/Al2O3摩擦副的摩擦系数和磨损率具有一致的变化规律,且Ni3Al/Al2O3摩擦副性能更佳. 25 ℃时,涂层与316L对摩时发生黏着磨损和磨粒磨损,而与高硬度的Al2O3对摩时发生脆性剥层和磨粒磨损,使涂层表面更粗糙导致较高的摩擦系数;Al2O3热导率较低,高接触应力作用下产生的大量摩擦热不能及时耗散,剥落材料贮存于剥落坑或黏附于磨损表面,使Ni3Al/Al2O3摩擦副具有较低的磨损率. 200~600 ℃时,高硬度的Al2O3对涂层的犁削作用较强导致Ni3Al/Al2O3摩擦副具有高的摩擦系数;而涂层在Al2O3碾压下发生塑性变形,使其具有较低的磨损率. 800 ℃时,高硬度的Al2O3促使磨损表面形成高氧化物含量的润滑膜,使Ni3Al/Al2O3摩擦副具有低的摩擦系数和高的磨损率.   相似文献   

8.
MAX相涂层是一类兼具陶瓷和金属性能的层状结构材料,具有优异的抗氧化和抗腐蚀性能,同时M位元素丰富,在宽温域摩擦过程中生成具有润滑作用的M基氧化物,受到广泛关注.本文中选择可生成V基Magnéli润滑相的V2AlC体系,采用电弧复合磁控溅射技术结合后续热处理制备高纯V2AlC MAX相涂层,并系统研究该涂层在室温~700℃宽温域下的摩擦磨损机理.研究发现,涂层在300和500℃时摩擦形式主要以黏着磨损和磨粒磨损为主.当环境温度高于600℃时,V的外扩散和氧化导致涂层表面生成层状V2O5润滑相,在600℃时形成连续的润滑膜,从而使V2AlC涂层具有最佳的摩擦学性能.同时,保留的V2AlC主相在摩擦过程中起承载作用,降低涂层的磨损率.  相似文献   

9.
本文中采用多弧离子镀系统在Ti-6Al-4V合金(TC4)上沉积TiSiN/Ag纳米多层涂层. 使用X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描型电子显微镜(SEM)表征涂层的成分和结构,并使用纳米压痕测试其硬度. 用Rtec MFT500摩擦磨损试验机对涂层在海水环境中的摩擦磨损性能进行测试. 结果表明:涂层具有致密的结构和清晰的多层界面,TiSiN层与Ag层交替沉积,涂层中包含TiN、Ag和Si3N4相,非晶Si3N4包裹纳米晶TiN. 相比TC4合金基体,沉积TiSiN/Ag纳米多层涂层后,摩擦系数在大气环境和海水环境均能下降0.15以上,磨损率降低两个数量级. 人工海水中摩擦状态下材料出现腐蚀摩擦交互作用,主要损耗形式为腐蚀对磨损的促进,TiSiN/Ag纳米多层涂层的耐磨蚀性能远优于基体材料.   相似文献   

10.
借助单源前驱体热分解在聚酰胺酰亚胺(PAI)涂层中原位合成了硫化银(Ag2S)纳米粒子,并通过调节单源前驱体的含量进一步调控纳米粒子尺寸. 采用X射线衍射仪和高分辨场发射扫描电镜对原位合成Ag2S纳米粒子的物相结构、形貌、尺寸和尺寸分布进行了表征和分析;详细研究了Ag2S纳米粒子对PAI涂层机械性能和摩擦学性能的影响;对其增强机制进行了探讨. 结果表明:PAI涂层中原位合成的Ag2S纳米粒子粒径较小而且分散均匀,且调节单源前驱体能有效调控Ag2S纳米粒子的尺寸和尺寸分布. Ag2S纳米粒子的原位引入(优化质量分数为5.0%)有效改善了PAI涂层的机械性能和摩擦学性能,其摩擦学性能的增强归因于机械强度的提高和诱导转移膜的形成.   相似文献   

11.
为了提高Ti6Al4V合金的耐磨减摩性能,在其表面利用激光熔覆技术制备出两种不同配比的Ti3SiC2/Ni60复合涂层,分别是5%Ti3SiC2+Ni60(N1)和10%Ti3SiC2+Ni60(N2)(均为质量分数),研究了这两种涂层在室温、300和600 ℃下的微观组织、显微硬度、摩擦学性能表现及相关磨损机理. 结果表明:涂层主要由硬质相TiC/TiB/TixNiy,γ-Ni固溶体连续相和润滑相Ti3SiC2组成. N1、N2涂层的显微硬度均为基体(350HV0.5)的3倍左右,分别为1 101.90HV0.5 和1 037.23HV0.5 ,在室温、300和600 ℃下的摩擦系数分别为0.39、0.35、0.30和0.41、0.45、0.44,均小于基体的摩擦系数(0.51、0.49、0.47). N1、N2涂层在室温、300和600 ℃下的磨损率分别为3.07×10?5、1.47×10?5、0.77×10?5 mm3/(N·m)和1.45×10?5、0.96×10?5、0.62×10?5 mm3/(N·m),均远小于基体[35.96×10?5、25.99×10?5、15.18×10?5mm3/(N·m)]. 在本文中Ti3SiC2提高了Ti6Al4V合金的耐磨减摩性能,使得N1涂层表现出更好的减摩性能,N2涂层表现出更好的耐磨性能. 室温下,磨粒磨损、塑性变形以及轻微的黏着磨损为两种涂层的主要磨损机理;300 ℃时,塑性变形、氧化磨损和黏着磨损是N1涂层的对应机理,600 ℃时出现了三体磨粒磨损;在300和600 ℃时,黏着磨损、氧化磨损及磨粒磨损为N2涂层的主要磨损机理.   相似文献   

12.
采用化学还原法成功制备出NbSe2/Ag纳米复合材料,即在NbSe2纳米片表面沉积1层纳米Ag颗粒. 采用UMT-2摩擦磨损试验机以及扫描电子显微镜(SEM)研究了NbSe2/Ag纳米复合材料添加到煤矿机械机用润滑油中的摩擦学行为. 结果表明:相比于纳米Ag颗粒和NbSe2,NbSe2/Ag纳米复合材料添加到润滑油中更加有效地改善了润滑油的润滑承载效果. NbSe2/Ag纳米复合材料所表现出最优良的摩擦学行为. 原因主要可能在于4个方面:第一,根据理论计算得出NbSe2、Ag和NbSe2/Ag纳米复合材料产生滑移的最大抗剪切强度按从小到大顺序排列为NbSe2/Ag纳米复合材料、Ag、NbSe2。NbSe2/Ag纳米复合材料抗剪切强度最小,润滑效果最好;第二,NbSe2/Ag纳米复合材料中的NbSe2由于纳米Ag负载相比于纯NbSe2具有更好的分散性,更利于形成完整均匀的润滑膜;第三,Ag质软润滑且弹性模量小,NbSe2/Ag纳米复合材料受到摩擦热以及剪切作用形成的润滑膜由于Ag的存在提高了脆性破坏能力,使得润滑膜在摩擦副上硬凸点的刮擦作用下不易破裂;第四,部分纳米Ag球状颗粒可能存在接触界面上有效的滚动,起到“微轴承”的作用从而降低摩擦系数. 然而,润滑油的润滑效果与所添加的NbSe2/Ag纳米复合材料含量并非呈现正相关关系,而是随着添加含量的增加呈现先降低后增加的趋势,在质量分数为1.5%时,效果最佳.   相似文献   

13.
采用原位聚合法制备了聚四氟乙烯@二氧化硅(PTFE@SiO2)复合粒子. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、粒径分布仪以及傅立叶红外光谱仪(FTIR)对复合粒子的形貌、粒径分布和组成结构进行了分析. 结果表明:所制备的复合粒子呈核壳型复合结构,粒子尺寸处于亚微米级别. 分散性试验表明:该粒子在水中具有良好的分散性和稳定性. 利用LSR-2M往复式摩擦磨损试验机测试了不同试验条件下复合粒子在水环境中的摩擦学性能,结果表明:在常温、0.019 m/s滑动速率以及0.2 μm的钢盘粗糙度下,PTFE@SiO2润滑剂具有最佳的摩擦学性能;相比于纯水和添加了PTFE/SiO2的润滑剂,其摩擦系数降低了近80%,磨损体积减小了1~2个数量级. 分析表明:PTFE@SiO2复合粒子优异的水润滑性能主要与核壳结构的存在以及在摩擦过程中形成的高质量转移膜密切相关.   相似文献   

14.
采用一步水热法设计制备了二硫化钼/硫化锌(MoS2/ZnS)纳米杂化体,并利用热压成型技术得到聚酰亚胺/二硫化钼/硫化锌(PI/MoS2/ZnS)复合材料. 采用扫描电子显微镜、透射电子显微镜、X射线衍射仪以及光电子能谱仪对所制备材料的形貌和化学组成进行表征,结果表明MoS2纳米薄片均匀致密地包覆在ZnS纳米颗粒表面. 热重分析和差示扫描量热曲线结果表明,MoS2/ZnS纳米杂化体的引入显著地提升了PI基体的热稳定性能. 摩擦磨损测试结果表明,三种填料(MoS2,ZnS和MoS2/ZnS)均能有效改善PI基体的摩擦学性能,其中MoS2/ZnS纳米杂化体的增强效应最为显著,这主要归因于MoS2纳米片和ZnS纳米粒子之间的协同增强效应. 当MoS2/ZnS纳米杂化体的质量分数为1.5%时, PI/MoS2/ZnS复合材料的摩擦学性能达到最优,相较于纯的PI,复合材料的摩擦系数和磨损率分别下降了15. 9%和34. 3%.   相似文献   

15.
采用电弧离子镀技术利用Ti50Al50、Ti50Al49Ag1、Ti50Al45Ag5合金靶沉积制备出了TiAlN及不同Ag含量的TiAlAgN涂层. 利用球-盘式摩擦磨损试验机研究了室温、200、400和600 ℃等温度下的摩擦学性能;通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、显微硬度计、表面轮廓仪和划痕仪对磨损前后涂层的表面形貌、微观结构、硬度及涂层结合力进行了分析. 结果表明:TiAlN、TiAlAgN(Ag原子百分数0.12%)、TiAlAgN(Ag原子百分数0.30%)涂层的厚度分别为为4.18、5.31和4.69 μm,硬度分别为HV0.2 2 049.4、HV0.2 1 672.9、HV0.2 1 398.5;TiAlN、TiAlAgN涂层的衍射峰位与面心立方的TiN相同,掺入Ag后TiAlN涂层的择优取向变为N(220)面. 三种涂层在不同温度下的磨损机理主要为黏着磨损与磨粒磨损. 室温时TiAlN涂层的摩擦系数比其他两种涂层要小约0.3,200 ℃时三种涂层的磨损率较大,400 ℃时掺Ag涂层的耐磨效果达到最佳. 此外,当Ag原子百分数在0.12%~0.30%范围时,随着Ag含量增加,涂层的结合力降低.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号