首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为研究大量程翘翘板摆式闭环MEMS加速度计系统的输出非线性,分别从质量块受力不平衡所产生的平动效应以及电路零位引起质量块闭环平衡位置偏差两个主要误差源入手,建立了两种误差引起加速度计非线性的数学模型,并采用ANSYS和Simulink软件对传感器结构及系统进行了仿真验证,确定了该模型的正确性及非线性的优化方法。最后,按照以上分析进行了样机制作和离心测试。试验结果表明,通过减小翘翘板摆式结构质量块的平动效应,可将±150g量程加速度计的非线性由5.4979′10-2减小至5.320′10~(-3),在此基础上通过减小质量块闭环平衡位置偏差,可进一步将加速度计的非线性减小至2.772′10~(-3)。  相似文献   

2.
为了降低闭环硅微加速度计的非线性,分析了其主要误差源并提出了相应的补偿方法。首先,分析了闭环状态下检测质量块偏离几何中心位置所造成的非线性问题,并确定了电路零位是主要误差源;其次,利用闭环反馈控制进行了非线性的优化分析;最后,提出了非线性补偿的工程调试方法。离心试验结果表明,采用该调试方法可将加速度计的非线性减小一个数量级以上。该结果验证了非线性误差分析和补偿方法的有效性,且适用于同批次加工的其它加速度计。  相似文献   

3.
为了提高加速度计非线性误差系数在离心机上的标定精度,应对离心机的误差源进行准确地分析和有效地分离。首先,通过分析双轴离心机的误差源建立了相应的坐标系,利用齐次变换法推导了加速度计在离心机上的精确比力输入并建立了加速度计的标定模型。其次,分析了相应误差项对加速度计零偏、标度因子和非线性误差项系数的标定影响,设计了加速度计在离心机上标定时的误差分离方法。最后,通过实验对加速度计的误差模型系数进行了辨识。结果表明,该方法能够准确分离出失准角误差和偏心误差,非线性误差系数的标定不确定度量级为10~(-4),能够有效提高加速度计的标定精度。  相似文献   

4.
为提高大过载高动态环境下捷联惯导系统导航精度,需对捷联惯导系统中的石英挠性加速度计非线性误差参数进行精确标定。针对现有标定方法在加速度计非线性误差参数发生变化时无法满足免拆卸高精度标定的问题,设计了一种基于双轴精密离心机和捷联惯导系统转位机构交替旋转、依靠转位机构实现9位置标定路径的系统级标定方法。经理论分析和仿真验证,所提方法可实现加速度计二次项、交叉耦合项共九个非线性误差参数系统级高精度标定,二次项误差参数标定精度优于1.0×10-6 g/g2,交叉耦合项误差参数标定精度优于1.5×10-6 g/g2。  相似文献   

5.
斜置惯性测量单元的一体化标定技术   总被引:1,自引:0,他引:1  
针对陀螺和加速度计均倾斜安装的低精度惯性测量单元,将三个 MEMS 加速度计组件和三个光纤陀螺组件分别考虑为一个整体,提出了一体化标定技术,将传统的零位、比例因子、安装误差等参数等效考虑为一个转换矩阵。根据实验得到的低精度斜置惯性测量单元的温度特性和非线性的经验公式,提出了补偿温度特性和非线性的一体化标定模型。利用速率转台和大理石平板在不同温度下进行测试,采用多元线性回归,得到了实用的角速度模型与加速度模型。实时补偿效果表明,当温度从 0℃到 24℃变化时,在±60(°)/s 转速内角速度误差小于 0.02 (°)/s,加速度误差小于 0.003g。  相似文献   

6.
为了实现应用精密离心机对捷联惯导系统不拆分整体标定时各加速度计误差模型系数进行精确辨识,分析了可能影响加速度计标定精度的离心机误差源进而建立了相应的坐标系.在考虑各加速度计与反转平台轴线距离的情况下,应用齐次变换法计算了各加速度计各轴实际的比力输入,结合给定的加速度计误差模型,设计了一种可辨识误差模型中全部二阶误差模型系数的测试方法.仿真结果表明,该方法经修正离心机误差后可以有效地提高所有误差模型系数的标定精度,并能给出各加速度计与反转平台轴线的距离.仿真还分析了离心机误差对标定精度的影响,结果表明:离心机误差项主要影响1号加速度计 KF、KP、KPP 的标定精度,而对于 KII、KIO 的标定无影响;另外主要影响2号加速度计 KF,KI,KII 的标定精度,以及3号加速度计 KF、KO 的标定精度.  相似文献   

7.
为了提高陀螺加速度计在线振动条件下的标定精度,提出了陀螺加速度计在线振动台上的进动整周期的测试方法。该方法将陀螺加速度计正倒置安装后,在静态和线振动状态下分别测量陀螺加速度计进动整周期中的相关时间数据,计算出陀螺加速度计进动整周期的平均角速率,通过平均角速率与陀螺加速度计模型输出间的积分关系,推导出了陀螺加速度计在线振动台上的标定误差模型,辨识出了加速度计的零偏、标度因子、二次项系数和三次项系数。该方法抑制了陀螺加速度计输出的平均角速率误差,能够提高陀螺加速度计在线振动台上测试的精度。最后进行了算法验证,验证了该方法能够准确的辨识出加速度计的各项误差模型系数,辨识精度达到10?7,提高了陀螺加速度计在线振动台上的标定精度。  相似文献   

8.
MEMS加速度计经过近四十年的发展,是目前产业化最为成功、应用最为广泛的MEMS器件之一。以硅微机械谐振器作为敏感元件的谐振式MEMS加速度计因具有检测精度高、线性度好、量程大、抗环境噪声能力强等优点,成为新一代高性能MEMS加速度计的重要发展方向。针对微小型无人平台的长时惯性导航、姿态测量等需求,设计了一种具有增敏结构的硅微谐振式加速度计,通过改进微杠杆转轴与惯性质量块支撑梁的几何形状并利用有限元仿真方法进行参数优化,在不增加芯片面积的前提下有效提升了器件灵敏度。器件设计量程±50 g,采用集成圆片级真空封装的SOI-MEMS工艺制造并配套设计了基于0.35 mm工艺的接口ASIC电路用于实现加速度计的闭环工作。所研制的原理样机测试表明,加速度计敏感谐振器品质因数为29300,灵敏度630.81 Hz/g,噪声≤1.7μg/■,零偏不稳定性(Allan方差)≤2.3μg。  相似文献   

9.
为了提高加速度计在1g重力场中的标定精度,分度头的角位置误差应非常小或将它有效地分离。提出了一种将正交双加速度计在分度头上,进行两种安装位置组合测试的方法。推导了加速度计误差模型系数的标定误差与分度头角位置误差成分的关系,设计了两种安装位置组合测试方法,从加速度计的输出中可分离分度头的角位置误差,提高加速度计误差模型系数的辨识精度,对试验数据进行误差分析后验证了该方法的正确性。  相似文献   

10.
基于MEMS加速度计的无陀螺惯导系统   总被引:2,自引:1,他引:1  
由于MEMS陀螺精度低、漂移大,使得MEMS陀螺和加速度计构成的微惯性导航系统(Micro-INS)的精度很低,导航定位误差发散很快,不能满足载体进行导航定位定姿的要求.而相对MEMS陀螺,MEMS加速度计精度较高,据此提出用MEMS加速度计来构成的无陀螺微惯性导航系统(Gyro FreeMicroInertial N...  相似文献   

11.
针对现有加速度计校准方法的不足,提出了一种在大于1g的离心大加速度激励下加速度计的多位置翻滚校准方法。建立了加速度计在离心加速度场翻滚校准的数学模型,研究了加速度计的离心加速度场翻滚校准方法,给出了离心加速度场翻滚校准步骤,并采用石英加速度计进行了离心加速度场的十二位置等多位置翻滚校准试验,获得了大g值激励下加速度计的安装误差、交叉耦合系数等模型方程系数。采用本方法进行校准,校准状态更接近加速度计实际使用状态,因而校准获得的模型方程系数用于修正后,将提高加速度计的测量精度。  相似文献   

12.
为了最大限度克服微机电陀螺的两个模态的相互耦合作用,提高微机电陀螺的综合性能指标,采用国内现有MEMS标准工艺方法,设计和制作了一种高性能单晶硅对称解耦结构的线振动陀螺。采用对称结构形式和保证陀螺驱动和检测模态振型都是弯曲振动模式,易于模态匹配;由于采用驱动模态和检测模态结构解耦方式,从微结构设计上大大降低了正交耦合误差影响,使陀螺具有输出零位小、零偏稳定性好的优点。测试结果表明:初次加工的样机,在大气中驱动和检测模态固有频率分别在2430Hz和2580Hz左右,在150Hz带宽内具有0.1~0.5(°)/s的分辨率;随着加工精度的提高和检测电路的改进,该陀螺在大气中15Hz带宽内实现0.008(°)/s的分辨率,在真空状态下,这种高性能单晶硅对称解耦结构的线振动陀螺性能会有进一步的提高。  相似文献   

13.
挠性捷联惯性导航系统误差补偿技术   总被引:1,自引:0,他引:1  
为了补偿载体角运动和振动引起的捷联惯性导航系统导航误差,通过分析载体角运动引起的圆锥误差,挠性陀螺刻度因数非线性、姿态角速率引起的加表零位变化等因素对导航结果的影响,采用三子样算法和非线性补偿技术,对上述误差进行了补偿。摇摆试验和跑车试验证明,通过上述补偿后,姿态精度、水平定位精度、垂直定位精度有明显的提高。  相似文献   

14.
高g值加速度计的设计与冲击特性分析   总被引:2,自引:0,他引:2  
针对特殊场合的测试需求,设计了四端全固支的高过载梁岛结构加速度计;利用Hopkinson杆冲击校准装置对该加速度计的动态特性进行了测试。测试结果表明,传感器的灵敏度为1.2V/g,线性度5%左右;结构受到2105g冲击后完好且输出信号正常,能有效满足高冲击、强烈振动场合的特殊测试要求,可以应用于侵彻系统。 更多还原  相似文献   

15.
激光陀螺捷联惯导系统尺寸效应参数标定与优化补偿   总被引:2,自引:0,他引:2  
提出一种捷联惯导系统尺寸效应标定补偿方法,先标定出捷联惯导系统中每个加速度计相对于三轴转台回转中心的杆臂参数,再基于尺寸效应误差最小原则,对载体坐标系原点位置进行优化,得出相应的尺寸效应参数。对于零偏稳定性优于2×10^-5g的加速度计,杆臂参数与尺寸效应参数标定重复性优于0.2mm。将载体坐标系原点置于三轴转台回转中心,以重力加速度g为基准验证标定补偿效果,转台匀速转动情况下,补偿后10min平均偏差小于2×10^-6g。根据激光陀螺角增量采样值求出角速度和角加速度,对惯导实验中的尺寸效应进行补偿,在转台角运动条件下纯惯性导航1h定位误差由尺寸效应补偿前的1600m减小到补偿后的300m以内。  相似文献   

16.
几何非线性是壁板颤振和大展弦比机翼气动弹性等问题的一个主要特征,在进行数值仿真分析时往往需要采用商业非线性有限元求解器,存在计算量大和耦合迭代策略不易控制等问题。本文发展了一种适用于几何非线性的结构动力学降阶模型(CSD-ROM),利用广义坐标的非线性多项式表征非线性内力,采用参数识别方法获取多项式系数,并通过增加额外的线性模态来改善模型预测精度。基于此方法,分别针对壁板颤振、切尖三角翼的CFD/CSD-ROM非线性颤振问题开展了时域响应分析。计算结果表明,通过CSD-ROM计算出的壁板颤振速度为590 m/s,颤振频率为174 Hz,与有限元结果误差分别为0.8%和1.7%。马赫数0.879时切尖三角翼的颤振动压预测结果为2.25 psi,与非线性有限元相比的误差为3.8%。本文采用的非线性和线性模态基底组合方法,在保证计算精度的基础上可有效降低训练样本数量,一定程度上可替代非线性有限元开展气动弹性分析。  相似文献   

17.
功能梯度板的非线性动力分析   总被引:3,自引:1,他引:3  
非线性材料功能梯度板件的动力分析是属于在数学方程上同时具有变系数、非线性、非定常特征的固体力学问题.文中首先将问题的变系数非线性偏微分方程组转化为各向异性常系数非线性常微分方程,然后用小参数法求得解析解,适用于各种形状、边界及功能梯度分布的板件非线性弹性振动分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号