首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
弹性力学广义混合变分原理及有限元广义混合法   总被引:2,自引:1,他引:2  
本文提出大位移非线性弹性理论更为一般的变分原理,称为广义混合变分原理.其特点是在它们的泛函中,含有可供任意选择的附加函数.令这些函数为某些特殊值,就可得到大位移非线性弹性理论中已有的诸变分原理.此外,略去泛函中的高阶小量,就直接得到小位移线性理论的更一般的广义变分原理,由于篇幅所限,这部份内容在此不再详述.本文的主要内容有三部份:(1)用新的思路建立并证明广义混合变分原理(大位移非线性;并把线性,非线性诸变分原理统一在一个框架中);(2)把广义混合变分原理用于有限元分析,称为有限元广义混合法;这时泛函中的附加函数对有限元分析的精度有影响,如何选择它们,使数值解答最佳,是一个有待进一步研究的问题;本文建议一个选择它们的准则;(3)给出有限元广义混合法的算例;为了比较,本文以文献[6]中的题目为对象,计算了应力强度因子.结果表明,按本文建议的准则,广义混合法的解答精度较高(单元数目相同).  相似文献   

2.
薄板有限元广义混合法及克服病态问题研究   总被引:3,自引:0,他引:3  
以薄板理论的广义混合变分原理为基础,建立了一种适用于薄板弯曲分析的有限元广义混合模式,给出了较实用的选择分裂因子的方法,算例表明有限元广义混合法比常规位移模式的精度高,同时还能克服常规有限元中的某些病态问题。本文还讨论了该法克服常规有限元中某些病态问题的机理。  相似文献   

3.
用有限元广义混合法分析不可压缩或几乎不可压缩弹性体   总被引:2,自引:0,他引:2  
不可压缩或几乎不可压缩问题在数学上表现为最小 势能原理中的某些项趋于无穷大,使得有限元方程产生病态。本文给出了不可压缩或几乎不可压缩弹性分析的广义混合变分原理,以此为基础建立了该类问题的有限元广义混合法。该变分原理的泛函中不含有上面这种奇异项,故其有限元方程不会产生病态。算例表明该有限元法可以同时进行可压缩、不可压缩或几乎不可压缩弹性分析,且精度良好;有限元常规位移法及Hermann法是该法的特例。  相似文献   

4.
应用弹性微结构理论,建立了具广义力场带孔隙损伤线弹性固体的基本模型.应用变积方法,同时分别建立了带孔隙损伤弹性固体四类和两类变量的广义变分原理,这些变分原理对应着带孔隙损伤弹性固体微分方程和初值边值条件.应用弹性微结构理论,建立了带孔隙损伤的弹性Timoshenko 梁的基本方程,得到带孔隙损伤的弹性Timoshenko 梁两类变量的广义变分原理.这些广义变分原理为近似求解带孔隙损伤的弹性问题提供了有效途径.  相似文献   

5.
弹性理论中广义变分原理的研究及其在有限元计算中的应用   总被引:15,自引:0,他引:15  
本文的目的在于说明怎样系统地建立各种广义变分原理,怎样合理地使用各种广义变分原理来改进有限元计算的成效。为了易于说明问题,本文只局限于弹性理论的各种广义变分原理,但其推广并不困难。本文指出,广义变分原理的泛函,可以系统地采用拉格朗日乘子法,把一般有条件的变分原理化为无条件的变分原理来唯一地决定的。拉格朗日乘子所代表的物理量,可以通过变分求极值或驻值的过程求得,从而消除了在建立广义变分原理的泛函时,人们经常陷入的象猜谜一样的困境。本文也指出:我们同样可以用拉格朗日乘子法把一般有多个条件的变分原理,化为条件个数较少的变分原理。我们称变分条件减少了的变分原理为各级不完全的广义变分原理。凡是把全部变分条件都消除了的变分原理,称为完全的广义变分原理,或简称广义变分原理;实际上是完全无条件的变分原理。本文建立了弹性小位移变形理论中的各级不完全的广义位能原理,和各级不完全的广义余能原理,包括从最小位能原理和最小余能原理分别导出的最完全的广义变分原理;并且证明了这两个弹性力学广义变分原理的泛函是等同的。在这些广义变分原理中,包括了Hellinger-Reissner(1950),胡海昌-鹫津久一郎(1955)的广义变分原理。本文也建立了弹性大位移变形理论中的位能原理和余能原理,并建立了有关位能余能的各级不完全的广义变分原理,包括以大位移变形的最小位能和最小余能原理分别导出的弹性力学广义变分原理,并且也证明了在大位移变形情况下,这两个弹性力学的广义变分原理也是等同的。本文除了列举广义变分原理在有限元法上的众所周知的应用外,还补充了三个比较重要的应用范围。  相似文献   

6.
不可压流体饱和多孔弹性梁的变分原理及有限元方法   总被引:3,自引:1,他引:2  
基于不可压饱和多孔弹性梁动力弯曲的数学模型,建立了以多孔弹性梁挠度和孔隙流体压力等效力偶为宗量的Gurtin型变分原理,并给出了特殊边界条件下解耦时的仅以挠度为宗量的变分原理.同时,作为动力响应的退化情形,讨论了拟静态情形下的相应变分原理.根据所建立的变分原理,导出了一个有限元离散公式.由于Gurtin型变分原理是关于时间的卷积型的泛函,空间的有限元离散导致一个关于时间的对称微分一积分方程组,此方程组可进一步转化为常微分方程组.利用隐式Euler法,给出了时间区域的计算格式.作为一个数值例子,分析了饱和多孔弹性悬臂梁在自由端简谐载荷作用下的动力响应,分析了流相与固相相互作用对饱和多孔弹性悬臂梁动力响应的影响.  相似文献   

7.
Reissner板问题的有限元广义混合法   总被引:4,自引:0,他引:4  
用一般弹性体的广义混合变分原理,导出了适合Reissner板弯曲问题的广义混合变分原理及其有限元广义混合法。算例说明,该有限元模式的刚度可以改变,比常规位移法的精度高,同时还能克服常规Reissner板位移元用于计算薄板时所出现的“剪切自锁”现象,计算结果稳定,最后分析该法能够克服“剪切自锁”现象的原因。  相似文献   

8.
邬瑞锋先生在《弹性-蠕变体理论的广义变分原理》中给出了四个广义变分原理的泛函: 小位移线性弹性-蠕变体理论广义变分原理: 大位移线性弹性-蠕变体理论广义变分原理: 文章中,作者列出了两个等式: 这等于说,I_1所对应的变分原理与I_2所对应的等价;而I_3所对应的变分原理与I_4所对应的等价,这是一个明显的错误。公式(1)中的两个等式并不是无条件成立的恒等式,而是在一定的条件下成立的,这个条件就是泛函I_1和I_3中的应力和应变函数满足弹性蠕变体的本构方程。  相似文献   

9.
1.前言弹性力学中的广义变分原理是一般性的变分原理.在这一原理中,自变函数可以任意选取,而自变函数问的相互关系(几何、物理、平衡三个方面)和边界条件由泛函的驻值来保证.这一变分原理广泛应用于有限元方法和弹性力学数值分析等问题中.利用广义变分原理求解弹性薄板弯曲问题的开创性工作可见文献[3].然而,在广义变分原理的具体应用方面,仍然存在着许多问题.例如,在弹性力学空间问题中,有位移,应变和应力等15个自变函数,人们还不太清楚怎样具体选择这些自变函数为好.又如,若选择的自变函数和受力物体的真实变形状态不适应时,此时广义变分原理不能导致近似解,有时甚至会得到错误的解答.  相似文献   

10.
孙辉  扶名福 《力学季刊》2008,29(1):158-165
对于具有摩擦约束的弹塑性接触问题,由于边界接触面上的摩擦力由不等式表示,导致得到包含摩擦约束的广义变分原理为广义变分不等原理.广义变分不等原理通过将摩擦力纳入问题的能量泛涵,可避免考虑摩擦力变化的具体过程,便于数值方法如有限元等在弹性接触问题上的应用.但是,通过对广义变分不等原理的研究,发现在弹性力学广义变分不等原理中,势能型和余能型广义变分不等原理,均存在临界变分现象,即变分时拉格朗日乘子为零,变分失败;或者得到的能量泛函变分后得不到问题的欧拉方程.在对弹性力学广义变分不等原理临界变分现象进行分析后,提出了避免发生临界变分现象的方法.实际应用证明了方法的有效性.通过避免临界变分现象的发生,可以保证拉格朗日乘子方法的有效使用.  相似文献   

11.
非线性有限元分析的非协调模式及存在的问题   总被引:1,自引:0,他引:1  
王金彦  陈军  李明辉 《力学进展》2004,34(4):455-462
利用非协调模式提高非线性有限元分析广泛采用的低阶单元的精度和性能,是国际计算力学界研究的热点和难点.阐述了国际上在非线性有限元分析中已广泛采用的增广假设应变法方法(the enhanced assumed strain, EAS)的基本原理,详细讨论了非协调模式用于非线性有限元分析保证收敛、稳定的条件及增广假设应变场插值函数的构造方法.介绍了国内学者关于几何非线性非协调模式的研究方法和研究成果: (1)从Hellinger-Reissner广义变分原理出发,提出了几何非线性非协调模式的收敛条件,并采用非线性计算的若干简化措施建立几何非线性非协调元的简化模型;(2)一类放松单元间协调要求的非线性广义变分原理,对几何非线性问题可以选择事先无协调约束的非协调函数建立非协调元,收敛性可以保证,并根据此非线性广义变分原理可建立C$^1$或C$^0$类几何非线性广义杂交元,C$^1$或C$^0$类精化杂交元和精化直接刚度法.指出了EAS方法用于非线性有限元分析存在的问题,即本构关系和求解方法的限制,并对非协调元应用于非线性有限元分析提出了展望.   相似文献   

12.
本文把建立有限元变分原理的一种新方法“N>2直接方法”从固体力学推广到流体力学,并用该方法把粘性流体动力学的广义功率消耗原理和广义变分原理发展成为有限元变分原理。还在论证中发现,相邻有限元交界面上的应力协调条件会自然地满足而无需引进任何拉民乘子。本文还建立了混合杂交非协调元的变分原理和广义变分原理,它解除了全部协调性约束条件和其它的边界性约束条件,但是并不增加待定的拉氏乘子,因此使有限元计算得到简化。本文结果可以作为粘性流体动力学有限元计算的基础定理。  相似文献   

13.
IntroductionIn 1 954,Hu[1,2 ]deducedHu_Washizuprinciplebyso_calledtrial_and_errormethod ,andin1 964 ,Chien[3]systematicallydiscussedtheLagrangemultipliermethod ,bywhichhesuccessfullydeducedHu_Washizuprinciple.Afterthatgeneralizedvariationalprinciplescanbearrivedat…  相似文献   

14.
The fundamentals for the correct use of the method of Lagrange multiplier are presented and illustrated by examples. Some misunderstandings of the method are clarified. Equivalent variational principles are defined. It is pointed out that for a given problem of mechanics, there may be many equivalent and unequivalent variational principles. The functional of the so called generalized variational principles of elasticity with more general forms[16] are linear combinations of the well known functionals given by Reissner and Hu-Washizu.  相似文献   

15.
The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.  相似文献   

16.
The generalized elastic material provides a reference model to cast in a unitary framework many structural models which are based on nonlinear monotone multivalued relations such as viscoelasticity, plasticity and unilateral models. The modified forms of the Hu-Washizu and Hellinger-Reissner principles and the displacement-based variational formulation are recovered for the generalized elastic material starting from a functional in the complete set of state variables. The related limitation principles are derived and their specialization to elasticity and elastoplasticity with mixed hardening are provided. It is shown that the interpolating fields for the pressure and the volumetric strain usually adopted in the B-bar method lead to a limitation principle. Accordingly the same elastic and elastoplastic solutions can be obtained by means of an approximate mixed displacement⧸pressure variational principle. A second application is concerned with the conditions ensuring the coincidence of the solutions between an approximate two-field mixed formulation and the displacement-based method. Numerical examples are provided to show the coincidence of the solutions obtained from different mixed finite element formulations, in elasticity or elastoplasticity, under the validity of the limitation principles.  相似文献   

17.
弹性理论中的临界变分及消除方法   总被引:4,自引:0,他引:4  
何吉欢 《力学季刊》1997,18(4):305-310
临界变分现象是拉氏乘子法的固有特性,钱伟长应用高阶拉氏乘子消除了临界变分现象。本文将提出一种新的方法-凑合反推法,这种方法摒充了拉氏乘子法,把拉氏乘子所在的项目一个待定函数F代替。这样构成的泛函,作者称之为试泛函。而待定函数F的识别类似于拉氏乘子的识别。通过该法可以方便地构造出各种多变量广义变分原理,并且可以消除临界变分现象。  相似文献   

18.
In this paper, variational principels in elasticity are classified according to the differences in the constraints used in these principles. It is shown in a previous paper [4] that the stress-strain relations are the constraint conditions in all these variational principles, and cannot be removed by the method of linear Lagrange multiplier. The other possible constraints are four of them: (1) equations of equilibrium, (2) strain-displacement relations, (3) boundary conditions of given external forces and (4) boundary conditions of given boundary displacements. In variational principles of elasticity, some of them have only one kind of such constraints, some have two kinds or three kinds of constraints and at the most four kinds of constraints. Thus, we have altogether 15 kinds of possible variational principles. However, for every possible variational principle, either the strain energy density or the complementary energy density may be used. Hence, there are altogether 30 classes of functional of variational principles in elasticity. In this paper, all these functionals are tabulated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号