首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beltrami-Mitchell equations for non-linear elasticity theory are derived using the first Piola-Kirchhoff stress and the deformation gradient tensors as field variables so as to yield linear equilibrium and compatibility equations, respectively. In the derivation it is assumed that a strain energy density and, correspondingly, a complementary strain energy density exist, and satisfy the axiom of objectivity. Substitution for the deformation gradient in the compatibility equations yields non-linear differential equations in terms of the first Piola-Kirchhoff stress tensor which may be regarded as the Beltrami-Mitchell equations of non-linear elasticity. The equations are also derived for “semi-linear” isotropic elastic materials and the theory is illustrated by three simple examples.  相似文献   

2.
Convergence of Peridynamics to Classical Elasticity Theory   总被引:1,自引:0,他引:1  
The peridynamic model of solid mechanics is a nonlocal theory containing a length scale. It is based on direct interactions between points in a continuum separated from each other by a finite distance. The maximum interaction distance provides a length scale for the material model. This paper addresses the question of whether the peridynamic model for an elastic material reproduces the classical local model as this length scale goes to zero. We show that if the motion, constitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic stress tensor converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of the local deformation gradient tensor, as in the classical theory. This limiting Piola-Kirchhoff stress tensor field is differentiable, and its divergence represents the force density due to internal forces. The limiting, or collapsed, stress-strain model satisfies the conditions in the classical theory for angular momentum balance, isotropy, objectivity, and hyperelasticity, provided the original peridynamic constitutive model satisfies the appropriate conditions.   相似文献   

3.
4.
Summary The compatibility between the objectivity principle and affine constitutive equations for the elastic Cauchy and Piola-Kirchhoff stress tensors with non-zero residual stress is examined. It is found that the Cauchy stress is allowed to be only a constant tensor, proportional to the identity tensor, while the Piola-Kirchhoff stress may be a linear function on the deformation gradient thus generalizing previous results by Fosdick and Serrin. The same conclusions are arrived at also by starting from viscoelasticity. Finally, in the case of Maxwell-like materials, the solutions to the objective evolution equations are shown to be objective functionals.
Sommario Si esamina la compatibilità tra il principio di obiettività ed equazioni costitutive affini per i tensori di stress elastici di Cauchy a Piola-Kirchhoff con stress residuo non nullo. Generalizzando risultati di Fosdick e Serrin si prova che il tensore di Cauchy può essere soltanto un tensore costante, proporzionale al tensore identità, mentre il tensore di Piola-Kirchhoff può essere una funzione lineare del gradiente di deformazione. Alle stesse conclusioni si perviene anche partendo dal funzionale della viscoelasticità. Infine si mostra che, per materiali tipo Maxwell, le soluzioni di equazioni di evoluzione obiettive sono funzionali obiettivi.
  相似文献   

5.
A class of non-symmetric deformations of a neo-Hookean incompressible nonlinearly elastic sphere are investigated. It is found via the semi-inverse method that, to satisfy the governing three-dimensional equations of equilibrium and the incompressibility constraint, only three special cases of the class of deformation fields are possible. One of these is the trivial solution, one the solution describing radially symmetric deformation, and the other a (non-symmetric, non-homogeneous) deformation describing inflation and stretching. The implications of these results for cavitation phenomena are also discussed. In the course of this work, we also present explicitly the spherical polar coordinate form of the equilibrium equations for the nominal stress tensor for a general hyperelastic solid. These are more complicated than their counterparts for Cauchy stresses due to the mixed bases (both reference and deformed) associated with the nominal (or Piola-Kirchhoff) stress tensor, but more useful in considering general deformation fields. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Recently these authors have proved [46, 47] that a smooth spin tensor Ωlog can be found such that the stretching tensor D can be exactly written as an objective corotational rate of the Eulerian logarithmic strain measure ln V defined by this spin tensor, and furthermore that in all strain tensor measures only ln V enjoys this favourable property. This spin tensor is called the logarithmic spin and the objective corotational rate of an Eulerian tensor defined by it is called the logarithmic tensor-rate. In this paper, we propose and investigate a hypo-elasticity model based upon the objective corotational rate of the Kirchhoff stress defined by the spin Ωlog, i.e. the logarithmic stress rate. By virtue of the proposed model, we show that the simplest relationship between hypo-elasticity and elasticity can be established, and accordingly that Bernstein's integrability theorem relating hypo-elasticity to elasticity can be substantially simplified. In particular, we show that the simplest form of the proposed model, i.e. the hypo-elasticity model of grade zero, turns out to be integrable to deliver a linear isotropic relation between the Kirchhoff stress and the Eulerian logarithmic strain ln V, and moreover that this simplest model predicts the phenomenon of the known hypo-elastic yield at simple shear deformation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
On the dead load boundary value problem   总被引:1,自引:0,他引:1  
  相似文献   

8.
Assuming that the free energy depends on the deformation gradient and the spatial electric field, we derive the expressions for the Cauchy stress tensor and the spatial electric displacement from an observer invariant quadratic form of the free energy via the strict definitions of these quantities. Specific forms of the Piola-Kirchhoff stress tensor and the material electric displacement are then deduced and linearized in a particular sense. As an application of the resulting theory, we formulate the problem of an electrically driven disc within the context of the classical bending theory of thin plates. The material of the disc is assumed to have at most the symmetry of a hexagonal system of classC 6v.The resulting coupled differential equations for the axial mechanical displacement of the middle surface and the material electric potential indicate that the problem is not empty. This result is of particular interest in view of the fact that it is generally held that the classical theory of piezoelectricity does not permit such couplings to occur.  相似文献   

9.
对弹性大变形理论中的3方面问题进行了综述.首先,对各种应变度量的共轭应力进行综述.大变形问题引起的应力状态描述的复杂性引起了许多学者的兴趣,对这个问题的研究也促进了大变形弹性理论的发展.在各种特定问题中,人们提出了不同的应力张量来描述应力状态,如Caucby应力张量、第一类和第一二类Piola-Kirchhoff应力张...  相似文献   

10.
The analytical properties of the constitutive equations in plasticity with a nonassociated flow rule are investigated. Under the assumption of small deformations the directional stiffness (and compliance) rule is considered and the relevant spectral properties of the tangent stiffness tensor are assessed. It is shown that the directional stiffness may be larger than the elastic. It may also be negative in the case of a formally perfectly plastic material and so the nonassociative flow rule represents (spurious) softening in terms of an associated flow rule. The issue of uniqueness at finite strains is briefly addressed, whereby use is made of the tangent stiffness tensor relating the velocity gradient to the first Piola-Kirchhoff stress rate. The relevant spectral properties, which generalise those from the small deformation case, are found explicit. A sufficient condition for uniqueness is given in terms of a critical (upper bound) value of the hardening modulus.  相似文献   

11.
基于绝对节点坐标的多柔体系统动力学高效计算方法   总被引:4,自引:0,他引:4  
刘铖  田强  胡海岩 《力学学报》2010,42(6):1197-1205
绝对节点坐标法已经被广泛应用于柔性多体系统的动力学研究之中, 但是其计算效率问题尚未得到很好的解决. 基于绝对节点坐标方法计算弹性力及其对广义坐标的偏导数矩阵(Jacobi矩阵), 通常是基于第二类Piola-Kirchhoff应力张量来完成, 计算效率不高.根据虚功原理并采用第一类Piola-Kirchhoff应力张量的方法直接推导得到了弹性力及其Jacobi矩阵的解析表达式. 基于不同方法所得的数值算例结果对比研究表明, 该方法可使计算效率大大提高.   相似文献   

12.
It is shown that, whenever the residual stress does not vanish, the response function delivering the Piola-Kirchhoff stress in terms of the deformation gradient may be genuinely linear, and yet independent of the observer; moreover, an explicit representation formula for such a function is obtained.  相似文献   

13.
An important theory on the dynamics of complex interfaces is the Doi and Ohta theory where the interfacial contribution to the Cauchy stress tensor is determined from an interfacial conformation tensor. For a uniform deformation field in the Eulerian framework, Doi and Ohta adopted a decoupling approximation to reduce a fourth-order tensor into two second-order tensors and derived a differential equation governing the evolution of the interfacial conformation tensor. In this paper, a different formulation is presented for establishing the Cauchy stress tensor based on a path-independent interfacial energy function. By differentiating this interfacial energy function against a Lagrangian strain tensor, a nearly closed-form solution for the stress tensor was determined, involving only elementary algebraic and matrix operations. From this process, the stress-conformation relation proposed by Doi and Ohta is also confirmed from a thermodynamic perspective. The testing cases with uniaxial elongation and simple shear further showed improved fitting to the analytical or exact solutions.  相似文献   

14.
李锡夔 《力学季刊》1994,15(3):8-15
本文应用由Simo和Rifai建议的混合假定附加应变途径,采用第二Piola-Kirchhoff应力张量和Green-Lagrange应变张量作能量共轭的应力应变度量,导出了Lagrange几何非线性下的胡海昌-Washizu三变量变分原理的Galerkin形式以及相应的混合假定应变元公式。  相似文献   

15.
进行了粗粒土与结构接触面单调和循环加载试验,基于宏细观测量结果, 扩展了 损伤概念以 描述该类接触面在受载过程中的物态演化, 及由于物态演化导致的力学特性从初始状态到最终 稳定状态的连续变化过程. 揭示了接触面损伤的细观物理基础主要是接触面内土的颗粒破碎 和剪切压密这两种物态演化;指出接触面的剪胀体应变可以划分为可逆性和不可逆性剪胀体 应变两部分,其中不可逆性剪胀体应变可作为接触面损伤发展的宏观量度,因此其归一化 形式可作为一种损伤因子的定义;提出了建立粗粒土与结构接触面一种损伤本构关系的基本思路.  相似文献   

16.
C. S. Jog 《Journal of Elasticity》2011,104(1-2):385-395
Analytical solutions to problems in finite elasticity are most often derived using the semi-inverse approach along with the spatial form of the equations of motion involving the Cauchy stress tensor. This procedure is somewhat indirect since the spatial equations involve derivatives with respect to spatial coordinates while the unknown functions are in terms of material coordinates, thus necessitating the use of the chain rule. In this classroom note, we derive compact expressions for the components of the divergence, with respect to orthogonal material coordinates, of the first Piola-Kirchhoff stress tensor. The spatial coordinate system is also assumed to be an orthogonal curvilinear one, although, not necessarily of the same type as the material coordinate system. We show by means of some example applications how analytical solutions can be derived more directly using the derived results.  相似文献   

17.
将有限变形单元与虚拟连接单元相结合,用于模拟准脆性材料破坏过程.首先基于精确的有限变形理论,采用第二类Piola-Kirchhoff应力与Green-Lagrange应变作为能量共轭的应力、应变对,推导出虚拟连接单元的单元刚度矩阵;通过数值算例,验证该单元的正确性与合理性,给出虚拟连接单元高度的取值范围,并与无此单元时...  相似文献   

18.
All bodies are inhomogeneous at some scale but experience has shown that some of these bodies can be idealized as a homogeneous body. Here we examine which bodies can be idealized as a homogeneous body when they are subjected to a non-dissipative mechanical process. This is done by studying circumstances in which an inhomogeneous body admits pure stretch homogeneous deformations. Then, we devise experiments wherein these circumstances are prevented. If homogeneous deformation is observed in these devised experiments, the body could be modeled as a homogeneous body. We limit our analysis to a class of isotropic elastic bodies deforming from a stress free reference configuration whose Cauchy stress is explicitly related to left Cauchy–Green deformation tensor. It is further assumed that the constitutive relation is differentiable function of the position vector of material particles in the stress free reference configuration. Then, we find that a cuboid made of compressible and isotropic material could be modeled as a homogeneous body if it deforms homogeneously due to the application of the normal stresses on all of its six faces and the magnitude of the normal stresses on three orthogonal faces are different. A cuboid made of incompressible and isotropic material could be modeled as a homogeneous body, if it deforms homogeneously in two different biaxial experiments, such that the plane in which the forces are applied in the two biaxial experiments is mutually orthogonal.  相似文献   

19.
An approximate stress-strain relation is derived for a granular material composed of spherical elastic granules in contact. The material is assumed to be statistically homogeneous so that the effective stress tensor can be obtained by a volume average. The resulting stress-strain relation is markedly non-linear and begins with the term ∥ε∥32, where ε is the classical infinitesimal strain tensor. Some simple deformation fields are worked out.  相似文献   

20.
The rate-dependent behavior of filled natural rubber (NR) and high damping rubber (HDR) is investigated in compression and shear regimes. In order to describe the viscosity-induced rate-dependent effects, a constitutive model of finite strain viscoelasticity founded on the basis of the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic parts is proposed. The total stress is decomposed into an equilibrium stress and a viscosity-induced overstress by following the concept of the Zener model. To identify the constitutive equation for the viscosity from direct experimental observations, an analytical scheme that ascertains the fundamental relation between the inelastic strain rate and the overstress tensor of the Mandel type by evaluating simple relaxation test results is proposed. Evaluation of the experimental results using the proposed analytical scheme confirms the necessity of considering both the current overstress and the current deformation as variables to describe the evolution of the rate-dependent phenomena. Based on this experimentally based motivation, an evolution equation using power laws is proposed to represent the effects of internal variables on viscosity phenomena. The proposed evolution equation has been incorporated in the finite strain viscoelasticity model in a thermodynamically consistent way. Simulation results for simple relaxation tests, multi-step relaxation tests and monotonic tests at different strain rates using the developed model show an encouraging correlation with the experiments conducted on HDR and NR in both compression and shear regimes. Finally, an approach to extend the proposed evolution equation for rate-dependent cyclic processes is proposed. The simulation results are critically compared with the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号