首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deformations possible (i.e., those satisfying the governing three-dimensional equations of equilibrium and the incompressibility constraint) within a class of non-symmetric deformations for a neo-Hookean nonlinearly elastic body were determined in [1], where it was found that only three special cases of the class of deformation fields considered could be solutions. One of these is the trivial solution, one the solution describing radially symmetric deformation, and the other a (non-symmetric, non-homogeneous) deformation contained within a family of universal deformations. In this paper, the results reported in [1] are shown to hold for a substantially broadened deformation field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The substantially general class of plane deformation fields, whose only restriction requires that the angular deformation not vary radially, is considered in the context of isotropic incompressible nonlinear elasticity. Analysis to determine the types of deformations possible, that is, solutions of the governing systems of nonlinear partial differential equations and constraint of incompressibility, is developed in general. The Mooney-Rivlin material model is then considered as an example and all possible solutions to the equations of equilibrium are determined. One of these is interpreted in the context of nonradially symmetric cavitation, i.e., deformation of an intact cylinder to one with a double-cylindrical cavity. Results for general incompressible hyperelastic materials are then discussed. The novel approach taken here requires the derivation and use of a material formulation of the governing equations; the traditional approach employing a spatial formulation in which the governing equations hold on an unknown region of space is not conducive to the study of deformation fields containing more than one independent variable. The derivation of the cylindrical polar coordinate form of the equilibrium equations for the nominal stress tensor (material formulation) for a general hyperelastic solid and a fully arbitrary cylindrical deformation field is also given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Summary The paper presents a solution for the linear thermoelastic problem of determining axisymmetric stress and displacement fields in an isotropic elastic solid of infinite extent weakened by an external circular crack under general mechanical loadings and general thermal conditions. The mechanical loadings and thermal conditions applied on the crack faces are axisymmetric, being non-symmetric about the crack plane. In similar lines of [7], equations of equilibrium of an elastic solid conducting heat have been solved using Hankel transforms and Abel operators of the first kind. Expressions for stress, displacement, temperature and heat flux functions are obtained in terms of Abel transforms of the first kind of the jumps of stress, displacement, temperature and heat flux at the crack plane. Two types of thermal conditions, that is, general surface temperatures and general heat flux on faces of the crack are considered. In both the cases, closed form solutions have been obtained for the unknown functions solving Abel type of integral equations. Explicit expressions for stresses, displacements, temperature fields, stress intensity factors have been obtained. Two special cases of thermal conditions in which: (i) crack faces are subjected to constant non-symmetric temperatures over a circular ring area, (ii) crack faces are subjected to constant non-symmetric heat flux over a circular ring area, have been considered. In some special cases, results have been compared with those from the literature.  相似文献   

4.
The stress tensor is expressed in terms of an arbitrary symmetric tensor field of second rank and the couple-stress tensor. The stress and couple-stress tensors are represented by arbitrary tensor fields satisfying the homogeneous equilibrium equations. These tensors are also given in the form of the expressions satisfying the inhomogeneous equilibrium equations used in the microcontinuum theory of elasticity. The stress tensor functions are considered.  相似文献   

5.
6.
7.
Beltrami-Mitchell equations for non-linear elasticity theory are derived using the first Piola-Kirchhoff stress and the deformation gradient tensors as field variables so as to yield linear equilibrium and compatibility equations, respectively. In the derivation it is assumed that a strain energy density and, correspondingly, a complementary strain energy density exist, and satisfy the axiom of objectivity. Substitution for the deformation gradient in the compatibility equations yields non-linear differential equations in terms of the first Piola-Kirchhoff stress tensor which may be regarded as the Beltrami-Mitchell equations of non-linear elasticity. The equations are also derived for “semi-linear” isotropic elastic materials and the theory is illustrated by three simple examples.  相似文献   

8.
On the basis of the nonlinear theory of elasticity, the general constitutive equation for an isotropic hyperelastic solid in the presence of initial stress is derived. This derivation involves invariants that couple the deformation with the initial stress and in general, for a compressible material, it requires 10 invariants, reducing to 9 for an incompressible material. Expressions for the Cauchy and nominal stress tensors in a finitely deformed configuration are given along with the elasticity tensor and its specialization to the initially stressed undeformed configuration. The equations governing infinitesimal motions superimposed on a finite deformation are then used to study the combined effects of initial stress and finite deformation on the propagation of homogeneous plane waves in a homogeneously deformed and initially stressed solid of infinite extent. This general framework allows for various different specializations, which make contact with earlier works. In particular, connections with results derived within Biot's classical theory are highlighted. The general results are also specialized to the case of a small initial stress and a small pre-deformation, i.e. to the evaluation of the acoustoelastic effect. Here the formulas derived for the wave speeds cover the case of a second-order elastic solid without initial stress and subject to a uniaxial tension [Hughes and Kelly, Phys. Rev. 92 (1953) 1145] and are consistent with results for an undeformed solid subject to a residual stress [Man and Lu, J. Elasticity 17 (1987) 159]. These formulas provide a basis for acoustic evaluation of the second- and third-order elasticity constants and of the residual stresses. The results are further illustrated in respect of a prototype model of nonlinear elasticity with initial stress, allowing for both finite deformation and nonlinear dependence on the initial stress.  相似文献   

9.
A new formulation of the equations of membrane theory in non-linear elasticity is described. It is based on the consistent use of certain conjugate variables averaged through the (undeformed) thickness of the thin shell which the membrane approximates. The deformation gradient is taken as the basic measure of deformation, and its average value as the membrane measure of deformation. It is shown that the average elastic strain energy can be regarded as a function of the average deformation gradient to within an error which is of the second order in a certain small parameter. Moreover, to the same order, the average strain energy is a potential function for the average nominal stress. This means that the averages of the conjugate variables (nominal stress and deformation gradient) are also conjugate.In terms of the average conjugate variables, the membrane equilibrium equations are obtained by averaging from the equilibrium equations of the full three-dimensional theory. Discussion of the order of magnitude of the errors involved in the membrane approximation is a feature of the analysis.The corresponding incremental equations are also derived as a prelude to their application in certain bifurcation problems. One such problem is examined in the companion paper (Part II) in which results for thick shells and membranes are compared.  相似文献   

10.
A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.  相似文献   

11.
A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are formulated in the two-dimensional case for relative displacements and relative rotations at contacts. By taking moments of the equilibrium equations, micromechanical expressions are obtained for the static quantities average Cauchy stress tensor and average couple stress tensor. In analogy, by taking moments of the compatibility equations, micromechanical expressions are obtained for the (infinitesimal) kinematic quantities average rotation gradient tensor and average Cosserat strain tensor in the two-dimensional case. Alternatively, these expressions for the average Cauchy stress tensor and the average couple stress tensor are obtained from considerations of the equivalence of the continuum force and couple traction vectors acting on a plane and the resultant of the discrete forces and couples acting on this plane. In analogy, the expressions for the average rotation gradient tensor and the average Cosserat strain tensor are obtained from considerations of the change of length and change of rotation of a line element in the two-dimensional case. It is shown that the average particle stress tensor is always symmetrical, contrary to the average stress tensor of an equivalent homogenized continuum. Finally, discrete analogues of the virtual work and complementary virtual work principles from continuum mechanics are derived.  相似文献   

12.
Nonstationary motions of incompressible viscoelastic Maxwell continuum with a constant relaxation time are considered. Because in an incompressible continuous medium, pressure is not a thermodynamic variable but coincides with the stress-tensor trace to within a factor, it follows that, separating the spherical part from this tensor, one can assume that the remaining part of the stress tensor has zero trace. In the case of an incompressible medium, the equations for the velocity, pressure, and stress tensor form a closed system of first-order equations which has both real and complex characteristics, which complicates the formulation of the initial-boundary-value problem. Nevertheless, the resolvability of the Cauchy problem can be proved in the class of analytic functions. Unique resolvability of the linearized problem was established in the classes of functions of finite smoothness. The class of effectively one-dimensional motions for which the subsystem of three equations is a hyperbolic one was studied. The results of an asymptotic analysis of the latter imply the possible formation of discontinuities during the evolution of the solution. The general system of equations of motion admits an infinite-dimensional Lie pseudo-group which contains an extended Galilean group. The theorem of the invariance of the conditions on the a priori unknown free boundary was proved to obtain exact solutions of free-boundary problems. The problem of deformation of a viscoelastic strip subjected to tangential stresses applied to the free boundary is considered as an example of application of this theorem. In this problem, a scale effect of short-wave instability caused by the absence of diagonal dominance of the stress tensor deviator was found.  相似文献   

13.
In Ref. [1], Spencer and Soldatos proposed an enhanced modelling approach for fibre-reinforced composites which accounts for the fibre-bending stiffness in addition to the directional dependency induced by the fibres. Although analytical solutions for simple geometries have been derived over the past years, often subject to specific assumptions such as small deformation kinematics, the application to more general and non-academic boundary value problems is desirable. Motivated by the latter, the numerical solution of the general system of partial differential equations by means of a multi-field finite element approach is proposed in Ref. [2] and the principal model properties are studied for a specific form of the elastic energy potential. In the present contribution a comparison of the numerical solution by means of the multi-field finite element approach against the analytical solution is presented for the azimuthal shear deformation of a tube-like structure. To this end, the general deformation pattern and especially the distribution of the stress and couple stress tensor are taken into account. We find that, although the analytical solution is derived subject to the assumption of small deformations, whereas the numerical solution is based on the finite strain counterpart of the theory, the simulation results are quasi identical, which verifies the numerical framework proposed.  相似文献   

14.
In the conventional theory of finite deformations of fibre-reinforced elastic solids it is assumed that the strain-energy is an isotropic invariant function of the deformation and a unit vector A that defines the fibre direction and is convected with the material. This leads to a constitutive equation that involves no natural length. To incorporate fibre bending stiffness into a continuum theory, we make the more general assumption that the strain-energy depends on deformation, fibre direction, and the gradients of the fibre direction in the deformed configuration. The resulting extended theory requires, in general, a non-symmetric stress and the couple-stress. The constitutive equations for stress and couple-stress are formulated in a general way, and specialized to the case in which dependence on the fibre direction gradients is restricted to dependence on their directional derivatives in the fibre direction. This is further specialized to the case of plane strain, and finite pure bending of a thick plate is solved as an example. We also formulate and develop the linearized theory in which the stress and couple-stress are linear functions of the first and second spacial derivatives of the displacement. In this case for the symmetric part of the stress we recover the standard equations of transversely isotropic linear elasticity, with five elastic moduli, and find that, in the most general case, a further seven moduli are required to characterize the couple-stress.  相似文献   

15.
Following Ogden, a class of objective (Lagrangian and Eulerian) tensors is identified among the second-rank tensors characterizing continuum deformation, but a more general definition of objectivity than that used by Ogden is introduced. Time rates of tensors are determined using convective rates. Sufficient conditions of objectivity are obtained for convective rates of objective tensors. Objective convective rates of strain tensors are used to introduce pairs of symmetric stress and strain tensors conjugate in a generalized sense. The classical definitions of conjugate Lagrangian (after Hill) and Eulerian (after Xiao et al.) stress and strain tensors are particular cases of the definition of conjugacy of stress and strain tensors in the generalized sense used in the present paper. Pairs of objective stress and strain tensors conjugate in the generalized sense are used to formulate constitutive relations for a hyperelastic medium. A family of objective generalized strain tensors is introduced, which is broader than Hill’s family of strain tensors. The basic forms of the hyperelastic constitutive relations are obtained with the aid of pairs of Lagrangian stress and strain tensors conjugate after Hill (the strain tensors in these pairs belong to the family of generalized strain tensors). A method is presented for generating reduced forms of the constitutive relations with the aid of pairs of Lagrangian and Eulerian stress and strain tensors conjugate in the generalized sense which are obtained from pairs of Lagrangian tensors conjugate after Hill by mapping tensor fields on one configuration of a deformable body to tensor fields on another configuration.   相似文献   

16.
The spatial problems of elasticity are mainly solved in displacements [1, 2], i.e., the Lamé equations are taken as the initial equations. This is related to the lack of general solutions for the system of basic equations of elasticity expressed in stresses. In this connection, a new variational statement of the problem in stresses was developed in [3, 4]; this statement consists in solving six generalized equations of compatibility for six independent components of the stress tensor, while the three equilibrium equations are transferred to the set of boundary conditions. This method is more convenient for the numerical solution of problems in stresses and has been tested when solving various boundary value problems. In the present paper, analyzing the completeness of the Saint-Venant identities and using the Maxwell stress functions, we obtain a new resolving system of three differential equations of strain compatibility for the three desired stress functions φ, ξ, and ψ. This system is an alternative to the three Lamé equilibrium equations for three desired displacement components u, v, w and is simpler in structure. Moreover, both of these systems of resolving equations can be solved by the new recursive-operator method [5, 6]. In contrast to well-known methods for constructing general solutions of linear differential equations and their systems, the solutions obtained by the recursive-operator method are constructed as operator-power series acting on arbitrary analytic functions of real variables (not necessarily harmonic), and the series coefficients are determined from recursive relations (matrix in the case of systems of equations). The arbitrary functions contained in the general solution can be determined directly either from the boundary conditions (the obtained system of inhomogeneous equations with a right-hand side can also be solved by the recursive-operator method [6]) or by choosing them from various classes of analytic functions (elementary, special); a complete set of particular solutions can be obtained in the same function classes, and the coefficients of linear combinations of particular solutions can be determined by the Trefftz method, the least-squares method, and the collocation method.  相似文献   

17.
The rectilinear deformation of an incompressible, isotropic clastic solid is, in general, characterized by the two planar fields of pressure and displacement magnitude, and these are, in turn, restricted by the three, generally independent, differential equations of equilibrium. The over-determined nature of this situation suggests the possibility that transverse deformations may accompany rectilinear shear—a possibility not supported by the linear theory. Within this context we consider the class of equilibrium non-linear clasticity problems which is associated with cylindrical domains whose various boundaries each are displaced rigidly along their generators. An approximation scheme is developed for determining the cross sectional deformation and a specific example for a cylinder with eccentric circular cross section is given.  相似文献   

18.
The purpose of this research is to investigate the basic issues that arise when generalized plane strain deformations are superimposed on anti-plane shear deformations in isotropic incompressible hyperelastic materials. Attention is confined to a subclass of such materials for which the strain-energy density depends only on the first invariant of the strain tensor. The governing equations of equilibrium are a coupled system of three nonlinear partial differential equations for three displacement fields. It is shown that, for general plane domains, this system decouples the plane and anti-plane displacements only for the case of a neo-Hookean material. Even in this case, the stress field involves coupling of both deformations. For generalized neo-Hookean materials, universal relations may be used in some situations to uncouple the governing equations. It is shown that some of the results are also valid for inhomogeneous materials and for elastodynamics.  相似文献   

19.
The liquid crystalline (LC) polymers are considered as anisotropic viscoelastic liquids with nonsymmetric stresses. A simple constitutive equation for nematic polymers describing the coupled relaxation of symmetric and antisymmetric parts of the stress tensor is formulated. For illustration of non-symmetric anisotropic viscoelasticity, the simplest viscometric flows of polymeric nematics in the magnetic field are considered. The frequency and shear rate dependencies of extended set of Miesowicz viscosities are predicted. Received: 23 March 1999/Accepted: 13 December 1999  相似文献   

20.
A solution for the overall electromechanical response of two-phase dielectric elastomer composites with (random or periodic) particulate microstructures is derived in the classical limit of small deformations and moderate electric fields. In this limit, the overall electromechanical response is characterized by three effective tensors: a fourth-order tensor describing the elasticity of the material, a second-order tensor describing its permittivity, and a fourth-order tensor describing its electrostrictive response. Closed-form formulas are derived for these effective tensors directly in terms of the corresponding tensors describing the electromechanical response of the underlying matrix and the particles, and the one- and two-point correlation functions describing the microstructure. This is accomplished by specializing a new iterative homogenization theory in finite electroelastostatics (Lopez-Pamies, 2014) to the case of elastic dielectrics with even coupling between the mechanical and electric fields and, subsequently, carrying out the pertinent asymptotic analysis.Additionally, with the aim of gaining physical insight into the proposed solution and shedding light on recently reported experiments, specific results are examined and compared with an available analytical solution and with new full-field simulations for the special case of dielectric elastomers filled with isotropic distributions of spherical particles with various elastic dielectric properties, including stiff high-permittivity particles, liquid-like high-permittivity particles, and vacuous pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号