首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
The material time rate of Lagrangean strain measures, objective corotational rates of Eulerian strain measures and their defining spin tensors are investigated from a general point of view. First, a direct and rigorous method is used to derive a simple formula for the gradient of the tensor-valued function defining a general class of strain measures. By means of this formula and the chain rule as well as Sylvester's formula for eigenprojections, explicit basis-free expressions for the material time rate of an arbitrary Lagrangean strain measure can be derived in terms of the right Cauchy–Green tensor and the material time rate of any chosen Lagrangean strain measure, e.g. Hencky's logarithmic strain measure. These results provide a new derivation of Carlson–Hoger's general gradient formula for an arbitrary generalized strain measure and supply a new, rigorous proof for Carlson–Hoger's conjecture concerning the n-dimensional case. Next, by virtue of the aforementioned gradient formula, a general fact for objective corotational rates and their defining spin tensors is disclosed: Let Ω = ϒ ( B, D, W) be any spin tensor that is continuous with respect to B, where B, D and B are the left Cauchy–Green tensor, the stretching tensor and the vorticity tensor. Then the corotational rate of an Eulerian strain measure defined by Ω is objective iff Ω = W + υ ( B, D), where Υ is isotropic. By means of this fact and certain necessary or reasonable requirements, it is further found that a single antisymmetric function of two positive real variables can be introduced to characterize a general class of spin tensors defining objective corotational rates. A general basis- free expression for all such spin tensors and accordingly a general basis-free expression for a general class of objective corotational rates of an arbitrary Eulerian strain measure are established in terms of the left Cauchy–Green tensor B and the stretching tensor B as well as the introduced antisymmetric function. By choosing several particular forms of the latter, all commonly-known spin tensors and corresponding corotational rates are shown to be incorporated into these general formulas in a natural way. In particular, with the aid of these general formulae it is proved that an objective corotational rate of the Eulerian logarithmic strain measure ln V is identical with the stretching tensor D and moreover that in all possible strain tensor measures only ln V enjoys this property. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

3.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

4.
According to the classical hypoelasticity theory, the hypoelasticity tensor, i.e. the fourth order Eulerian constitutive tensor, characterizing the linear relationship between the stretching and an objective stress rate, is dependent on the current stress and must be isotropic. Although the classical hypoelasticity in this sense includes as a particular case the isotropic elasticity, it fails to incorporate any given type of anisotropic elasticity. This implies that one can formulate the isotropic elasticity as an integrable-exactly classical hypoelastic relation, whereas one can in no way do the same for any given type of anisotropic elasticity. A generalization of classical theory is available, which assumes that the material time derivative of the rotated stress is dependent on the rotated Cauchy stress, the rotated stretching and a Lagrangean spin, linear and of the first degree in the latter two. As compared with the original idea of classical hypoelasticity, perhaps the just-mentioned generalization might be somewhat drastic. In this article, we show that, merely replacing the isotropy property of the aforementioned stress-dependent hypoelasticity tensor with the invariance property of the latter under an R-rotating material symmetry group R⋆ G 0, one may establish a natural generalization of classical theory, which includes all of elasticity. Here R is the rotation tensor in the polar decomposition of the deformation gradient and G 0 any given initial material symmetry group. In particular, the classical case is recovered whenever the material symmetry is assumed to be isotropic. With the new generalization it is demonstrated that any two non-integrable hypoelastic relations based on any two objective stress rates predict quite different path-dependent responses in nature and hence can in no sense be equivalent. Thus, the non-integrable hypoelastic relations based on any given objective stress rate constitute an independent constitutive class in its own right which is disjoint with and hence distinguishes itself from any class based on another objective stress rate. Only for elasticity, equivalent hypoelastic formulations based on different stress rates may be established. Moreover, universal integrability conditions are derived for all kinds of objective corotational stress rates and for all types of material symmetry. Explicit, simple, integrable-exactly hypoelastic relations based on the newly discovered logarithmic stress rate are presented to characterize hyperelasticity with any given type of material symmetry. It is shown that, to achieve the latter goal, the logarithmic stress rate is the only choice among all infinitely many objective corotational stress rates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Hencky's elasticity model is an isotropic, finite hyperelastic equation obtained by simply replacing the Cauchy stress tensor and the infinitesimal strain tensor in the classical Hooke's law for isotropic infinitesimal elasticity with the Kirchhoff stress tensor and Hencky's logarithmic strain tensor. A study by Anand in 1979 and 1986 indicates that it is a realistic finite elasticity model that is in good accord with experimental data for a variety of engineering materials for moderate deformations. Most recently, by virtue of well-founded physical grounds and rigorous mathematical procedures it has been demonstrated by these authors that this model may be essential to achieving self-consistent Eulerian rate type theories of finite inelasticity, e.g., the J 2-flow theory for metal plasticity, etc. Its predictions have been studied for some typical deformation modes, including extension, simple shear and torsion, etc. Here we are concerned with finite bending of a rectangular block. We show that a closed-form solution may be obtained. We present explicit expressions for the bending angle and the bending moment in terms of the maximum or minimum circumferential stretch in a general case of compressible deformations for any assigned stretch normal to the bending plane. In particular, simplified results are derived for the plane strain case and for the case of incompressibility. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The logarithmic or Hencky strain measure is a favored measure of strain due to its remarkable properties in large deformation problems. Compared with other strain measures, e.g., the commonly used Green-Lagrange measure, logarithmic strain is a more physical measure of strain. In this paper, we present a Hencky-based phenomenological finite strain kinematic hardening, non-associated constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The derivation is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, and on the use of the isotropic property of the Helmholtz strain energy function. We also use the fact that the corotational rate of the Eulerian Hencky strain associated with the so-called logarithmic spin is equal to the strain rate tensor (symmetric part of the velocity gradient tensor). Satisfying the second law of thermodynamics in the Clausius-Duhem inequality form, we derive a thermodynamically-consistent constitutive model in a Lagrangian form. In comparison with the available finite strain models in which the unsymmetric Mandel stress appears in the equations, the proposed constitutive model includes only symmetric variables. Introducing a logarithmic mapping, we also present an appropriate form of the proposed constitutive equations in the time-discrete frame. We then apply the developed constitutive model to shape memory alloys and propose a well-defined, non-singular definition for model variables. In addition, we present a nucleation-completion condition in constructing the solution algorithm. We finally solve several boundary value problems to demonstrate the proposed model features as well as the numerical counterpart capabilities.  相似文献   

7.
The exact formulae for the plastic and the elastic spin referred to the deformed configuration are derived, where the plastic spin is a function of the plastic strain rate and the elastic spin a function of the elastic strain rate. With these exact formulae we determine the macroscopic substructure spin that allows us to define the appropriate corotational rate for finite elastoplasticity.Plastic, elastic and substructure spin are considered and simplified for various sub-classes of restricted elastic-plastic strains. It is shown that for the special cases of rigid-plasticity and hypoelasticity the proposed corotational rate is identical with the Green-Naghdi rate, while the ZarembaJaumann rate yields a good approximation for moderately large strains.To compare our exact plastic spin formula with the constitutive assumption for the plastic spin introduced by Dafalias and others, we simplify our result for small elastic-moderate plastic strains and introduce a simplest evolution law for kinematic hardening leading to the Dafalias formula and to an exact determination of its unknown coefficient. It is also shown that contrary to statements in the literature the plastic spin is not zero for vanishing kinematic hardening.For isotropic-elastic material with induced plastic flow undergoing isotropic and kinematic hardening constitutive and evolution laws are proposed. Elastic and plastic Lagrangean and Eulerian logarithmic strain measures are introduced and their material time derivatives and corotational rates, respectively, are considered. Finally, the elastic-plastic tangent operator is derived.The presented theory is implemented in a solution algorithm and numerically applied to the simple shear problem for finite elastic-finite plastic strains as well as for sub-classes of restricted strains. The results are compared with those of the literature and with those obtained by using other corotational rates.  相似文献   

8.
Recently it has been demonstrated that, on the basis of the separation D=De+Dp arising from the split of the stress power and two consistency criteria for objective Eulerian rate formulations, it is possible to establish a consistent Eulerian rate formulation of finite elastoplasticity in terms of the Kirchhoff stress and the stretching, without involving additional deformation-like variables labelled “elastic” or “plastic”. It has further been demonstrated that this consistent formulation leads to a simple essential structure implied by the work postulate, namely, both the normality rule for plastic flow Dp and the convexity of the yield surface in Kirchhoff stress space. Here, we attempt to place such an Eulerian formulation on the thermodynamic grounds by extending it to a general case with thermal effects, where the consistency requirements are treated in a twofold sense. First, we propose a general constitutive formulation based on the foregoing separation as well as the two consistency criteria. This is accomplished by employing the corotational logarithmic rate and by incorporating an exactly integrable Eulerian rate equation for De for thermo-elastic behaviour. Then, we study the consistency of the formulation with thermodynamic laws. Towards this goal, simple forms of restrictions are derived, and consequences are discussed. It is shown that the proposed Eulerian formulation is free in the sense of thermodynamic consistency. Namely, a Helmholtz free energy function in explicit form may be found such that the restrictions from the thermodynamic laws can be fulfilled with positive internal dissipation for arbitrary forms of constitutive functions included in the constitutive formulation. In particular, that is the case for the foregoing essential constitutive structure in the purely mechanical case. These results eventually lead to a complete, explicit constitutive theory for coupled fields of deformation, stress and temperature in thermo-elastoplastic solids at finite deformations.  相似文献   

9.
The familiar small strain thermodynamic 3D theory of isotropic pseudoelasticity proposed by Raniecki and Lexcellent is generalized to account for geometrical effects. The Mandel concept of mobile isoclinic, natural reference configurations is used in order to accomplish multiplicative decomposition of total deformation gradient into elastic and phase transformation (p.t.) parts, and resulting from it the additive decomposition of Eulerian strain rate tensor. The hypoelastic rate relations of elasticity involving elastic strain rate are derived consistent with hyperelastic relations resulting from free energy potential. It is shown that use of Jaumann corotational rate of stress tensor in rate constitutive equations formulation proves to be convenient. The formal equation for p.t. strain rate , describing p.t. deformation effects is proposed, based on experimental evidence. Phase transformation kinetics relations are presented in objective form. The field, coupled problem of thermomechanics is specified in rate weak form (rate principle of virtual work, and rate principle of heat transport). It is shown how information on the material behavior and motion inseparably enters the rate virtual work principle through the familiar bridging equation involving Eulerian rate of nominal stress tensor.
  相似文献   

10.
From a general standpoint in terms of internal variables, we formulate a general theory of self-consistent Eulerian finite elastoplasticity based on the additive decomposition of the Eulerian strain rate, i.e., D=De+Dp, as well as two consistency criteria. In this theory, the elastic behaviour is characterized by an exactly integrable elastic rate equation for De with a general form of complementary elastic potential. It is assumed that the yield function depends in a general manner on the Kirchhoff stress and the internal variables. Moreover, the plastic rate equation for Dp and the evolution equation for each internal variable are allowed to assume general forms relying on the just-mentioned variables and the stress rate. It is indicated that two consistency criteria, i.e., the self-consistency for the elastic rate equation and Prager's yielding stationarity, lead to the unique choice of objective rates, i.e., the logarithmic rate.The structure of the above theory is further studied and examined by virtue of a weakened form of Ilyushin's postulate. In a spinning frame defining the logarithmic rate, we introduce the notion of standard elastoplastic strain cycle, which starts at a point not on but inside a yield surface and incorporates only one infinitesimal plastic subpath. We show that this type of strain cycle is always possible. Then, by ruling out strain cycles starting at points on yield surfaces we propose a weakened form of Ilyushin's postulate, which says that the changing rate of the stress work done along every standard strain cycle should be non-negative, whenever the incorporated plastic subpath tends to vanish. By virtue of simple, rigorous procedures, we demonstrate that this weakened form of Ilyushin's postulate is adequate to ensure direct results concerning the normality rule and the convexity of the yield surface in the context of the foregoing Eulerian finite elastoplasticity theory. Specifically, with an exactly integrable elastic rate equation defining De, we prove that, in the space of the Kirchhoff stresses, the difference (DDe) is just the gradient of the yield function multiplied by a plastic multiplier, and thus bears the very kinematical and physical feature of plastic strain rate. Furthermore, we prove that, in the space of the Kirchhoff stresses, the elastic domain bounded by each yield surface should be convex. The main results are derived in a self-contained manner within the context of an Eulerian theory of finite elastoplasticity, without involving issues concerning how to define intermediate stress-free states and plastic strains, etc.  相似文献   

11.
12.
Starting from the issue of what is the correct form for a Legendre transformation of the strain energy in terms of Eulerian and two-point tensor variables we introduce a new two-point deformation tensor, namely H=(FF−T)/2, as a possible deformation measure involving points in two distinct configurations. The Lie derivative of H is work conjugate to the first Piola–Kirchhoff stress tensor P. The deformation measure H leads to straightforward manipulations within a two-point setting such as the derivation of the virtual work equation and its linearization required for finite element implementation. The manipulations are analogous to those used for the Lagrangian and Eulerian frameworks. It is also shown that the Legendre transformation in terms of two-point tensors and spatial tensors require Lie derivatives. As an illustrative example we propose a simple Saint Venant–Kirchhoff type of a strain-energy function in terms of H. The constitutive model leads to physically meaningful results also for the large compressive strain domain, which is not the case for the classical Saint Venant–Kirchhoff material.  相似文献   

13.
Meyers  A.  Bruhns  O.T.  Xiao  H. 《Meccanica》2000,35(3):229-247
Recently, a new Eulerian rate type kinematic hardening elastoplasticity model has been established by utilizing the newly discovered logarithmic rate. It has been proved that this model is unique among all the objective kinematic hardening elastoplastic models with all possible objective corotational stress rates and other known objective stress rates by virtue of the self-consistency criterion: the hypoelastic formulation intended for elastic behaviour must be exactly integrable to deliver a hyperelastic relation. The finite simple shear response of this model has been studied and shown to be reasonable for both shear and normal stress components. The objective of this work is to further study the large deformation response of this model, in particular the well-known Swift effect, in torsion of thin-walled cylindrical tubes with free ends. Analytical perturbation solution and numerical solution are presented for the case of linear kinematic hardening at large compressible deformation. It is shown that the prediction from the foregoing model is in good accord with experimental data reported in literature.  相似文献   

14.
In the present paper, some new basis-free expressions for an arbitrary objective corotational rate of the general Eulerian strain measures are provided which are in compact form. Moreover, a complete discussion on the requirements for the continuity of the objective corotational rates are presented.   相似文献   

15.
A new Eulerian rate type elastic-perfectly plastic model has recently been established by utilizing the newly discovered logarithmic rate. It has been proved that this model is unique among the objective elastic-perfectly plastic models with all objective corotational stress rates and other known objective stress rates by virtue of the self-consistency criterion: the hypoelastic formulation intended for elastic behaviour must be exactly integrable to deliver a hyperelastic relation. The finite simple shear response of this model has been studied and shown to be reasonable for both shear and normal stress components. On the other hand, a kinematic hardening plasticity model may be formulated by adopting the logarithmic rate. The objective of this work is to further study the large deformation responses of the foregoing two kinds of idealized models, in particular the well-known Swift effect, in torsion of thin-walled cylindrical tubes. A complete, rigorous analysis is made for the orders of magnitude of all stress components. A closed-form solution is obtained for the kinematic hardening plastic case, and an analytical perturbation solution is derived for the elastic-perfectly plastic case. It is shown that the simple idealized kinematic hardening model with the logarithmic rate, which uses only two classical material constants, i.e., the initial (tensile) yield stress and the hardening modulus, may arrive at satisfactory explanation for and reasonable accord with salient features of experimental observation.  相似文献   

16.
在大变形弹塑性本构理论中,一个基本的问题是弹性变形和塑性变形的分解.通常采用两种分解方式,一是将变形率(或应变率)加法分解为弹性和塑性两部分,其中,弹性变形率与Kirchhoff应力的客观率通过弹性张量联系起来构成所谓的次弹性模型,而塑性变形率与Kirchhoff应力使用流动法则建立联系;另一种是基于中间构形将变形梯度进行乘法分解,它假定通过虚拟的卸载过程得到一个无应力的中间构形,建立所谓超弹性-塑性模型.研究了基于变形梯度乘法分解并且基于中间构形的大变形弹塑性模型所具有的若干性质,包括:在不同的构形上,塑性旋率的存在性、背应力的对称性、塑性变形率与屈服面的正交性以及它们之间的关系.首先,使用张量函数表示理论,建立了各向同性函数的若干特殊性质,并导出了张量的张量值函数在中间构形到当前构形之间进行前推后拉的简单关系式.然后,基于这些特殊性质和关系式,从热力学定律出发,建立模型在不同构形上的数学表达,包括客观率表示的率形式和连续切向刚度等,从而获得模型所具有的若干性质.最后,将模型与4种其他模型进行了比较分析.   相似文献   

17.
Summary  Recently, a new Eulerian rate-type isotropic-hardening elastoplasticity model has been established by utilizing the newly discovered logarithmic rate. It has been proved that this model is unique among all isotropic hardening elastoplastic models with all possible objective corotational stress rates and other known objective stress rates by virtue of the self-consistency criterion: the hypoelastic formulation intended for elastic behaviour must be exactly integrable to deliver a hyperelastic relation. The simple shear response of this model has been studied and shown to be reasonable for both the shear and normal stress components. The objective of this work is to further study the large deformation response of this model, in particular, the second-order effects, including the well-known Swift effect, in torsion of thin-walled cylindrical tubes with free ends. An analytical perturbation solution is derived, and numerical results are presented by means of the Runge–Kutta method. It is shown that the prediction of this model for the shear stress is in good accord with experimental data, but the predicted axial length change is negligibly small and much less than experimental data. This suggests that the strain-induced anisotropy may be the main cause of the Swift effect. Received 10 December 1999; accepted for publication 20 July 2000  相似文献   

18.
The objective of this article is to suggest new Eulerian rate type constitutive models for isotropic finite deformation elastoplasticity with isotropic hardening, kinematic hardening and combined isotropic-kinematic hardening etc. The main novelty of the suggested models is the use of the newly discovered logarithmic stress rate and the incorporation of a simple, natural explicit integrable-exactly rate type formulation of general hyperelasticity. Each new model is thus subjected to no incompatibility of rate type formulation for elastic behaviour with the notion of elasticity, as encountered by any other existing Eulerian rate type model for elastoplasticity or hypoelasticity. As particular cases, new Prandtl-Reuss equations for elastic-perfect plasticity and elastoplasticity with isotropic hardening, kinematic hardening and combined isotropic-kinematic hardening, respectively, are presented for computational and practical purposes. Of them, the equations for kinematic hardening and combined isotropic–kinematic hardening are, respectively, reduced to three uncoupled equations with respect to the spherical stress component, the shifted stress and the back-stress. The effects of finite rotation on the current strain and stress and hardening behaviour are indicated in a clear and direct manner. As illustrations, finite simple shear responses for the proposed models are studied by means of numerical integration. Further, it is proved that, among all possible (infinitely many) objective Eulerian rate type models, the proposed models are not only the first, but unique, self-consistent models of their kinds, in the sense that the rate type equation used to represent elastic behaviour is exactly integrable to really deliver an elastic relation. ©  相似文献   

19.
A new modified couple stress theory for anisotropic elasticity is proposed. This theory contains three material length scale parameters. Differing from the modified couple stress theory, the couple stress constitutive relationships are introduced for anisotropic elasticity, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. However, under isotropic case, this theory can be identical to modified couple stress theory proposed by Yang et al. (Int J Solids Struct 39:2731–2743, 2002). The differences and relations of standard, modified and new modified couple stress theories are given herein. A detailed variational formulation is provided for this theory by using the principle of minimum total potential energy. Based on the new modified couple stress theory, composite laminated Kirchhoff plate models are developed in which new anisotropic constitutive relationships are defined. The First model contains two material length scale parameters, one related to fiber and the other related to matrix. The curvature tensor in this model is asymmetric; however, the couple stress moment tensor is symmetric. Under isotropic case, this theory can be identical to the modified couple stress theory proposed by Yang et al. (Int J Solids Struct 39:2731–2743, 2002). The present model can be viewed as a simplified couple stress theory in engineering mechanics. Moreover, a more simplified model of couple stress theory including only one material length scale parameter for modeling the cross-ply laminated Kirchhoff plate is suggested. Numerical results show that the proposed laminated Kirchhoff plate model can capture the scale effects of microstructures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号