首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The materials with different moduli in tension and compression are called bi-modulus materials. Graphene is such a kind of materials with the highest strength and the thinnest thickness. In this paper, the mechanical response of the bi-modulus beam subjected to the temperature effect and placed on the Winkler foundation is studied. The differential equations about the neutral axis position and undetermined parameters of the normal strain of the bi-modulus foundation beam are established. Then, the analytical expressions of the normal stress, bending moment, and displacement of the foundation beam are derived. Simultaneously, a calculation procedure based on the finite element method(FEM) is developed to obtain the temperature stress of the bi-modulus structures. It is shown that the obtained bi-modulus solutions can recover the classical modulus solution, and the results obtained by the analytical expressions, the present FEM procedure, and the traditional FEM software are consistent, which verifies the accuracy and reliability of the present analytical model and procedure. Finally, the difference between the bi-modulus results and the classical same modulus results is discussed, and several reasonable suggestions for calculating and optimizing the certain bi-modulus member in practical engineering are presented.  相似文献   

2.
吴晓 《力学季刊》2023,44(1):210-217
利用高阶剪切变形理论研究了双模量梁的弯曲变形问题,推导出了双模量梁的挠曲线方程及弯曲正应力公式.讨论分析了翘曲函数的指数n对挠度、正应力的影响.研究结果表明:拉压弹性模量的差异对梁的弯曲应力有较大影响.把高阶剪切变形理论的计算结果与弹性理论计算结果进行比较,可知该方法计算精度非常高.  相似文献   

3.
不同拉压模量连续梁的解析解   总被引:1,自引:0,他引:1  
拉压不同模量的材料在工程中应用很广,特别是近几年发展起来的复合材料都具有明显的拉压不同模量性质.本文对复杂应力状态下不同模量连续梁提出了中性轴判断定理,并用分段积分方法推导出不同模量结构的中性层计算表达式及应力的解析解.通过对实例的计算及分析,得出不同模量与经典力相同模量两种方法在结构应力计算上的差异,最后提出对该类结...  相似文献   

4.
A realistic beam structure often exhibits material and geometrical non-linearity, in particular for those made of metals. The mechanical behaviors of a non-linear functionally graded-material (FGM) cantilever beam subjected to an end force are investigated by using large and small deformation theories. Young's modulus is assumed to be depth-dependent. For an FGM beam of power-law hardening, the location of the neutral axis is determined. The effects of depth-dependent Young's modulus and non-linearity parameter on the deflections and rotations of the FGM beams are analyzed. Our results show that different gradient indexes may change the bending stiffness of the beam so that an FGM beam may bear larger applied load than a homogeneous beam when choosing appropriate gradients. Moreover, the bending stress distribution in an FGM beam is completely different from that in a homogeneous beam. The bending stress arrives at the maximum tensile stress at an internal position rather than at the surface. Obtained results are useful in safety design of linear and non-linear beams.  相似文献   

5.
杨帆  盛冬发  徐国林 《力学季刊》2016,37(2):403-411
根据考虑损伤的变模量弹性理论,建立了考虑损伤的拉压不同模量梁的弯曲基本方程,推导了梁的拉(压)应力、受拉区高度和挠度的计算公式.应用数值计算方法,分别得到了有损与无损时梁极限拉(压)应力、受拉区高度与模量比的关系曲线以及有损梁的最大挠度和模量比的关系曲线,同时得到了梁拉(压)应力比值、损伤引起的中性轴偏移量和梁跨中挠度比值与载荷的关系曲线.这些结论可为工程上具拉压不同模量梁的截面设计提供一定的参考价值.  相似文献   

6.
Based on elastic theory of different tension-compression modulus, the analyttcal solution was deduced for bending-compression column subject to combined loadings by the flowing coordinate systemaxis, stress, strain andand phased integration methoddisplacement were developed,The formulations for the neutralthe finite element program was compiled for calculation, and the comparison between the result of finite element and analytical solution were given too. Finally, compare and analyze the result of different modulus and the same modulus, obtain the difference of two theories in result, and propose the reasonable suggestion for the calculation of this structure.  相似文献   

7.
随着工字形短深梁和宽翼缘梁结构的发展,截面非线性剪切变形对弯曲应力的影响愈加突出,导致传统设计中所采用的初等梁理论计算结果误差较大,不再适用。本文基于比拟杆法综合考虑剪切效应,推导出工字形梁横力弯曲应力解析计算公式,并与有限元及现有解析计算方法进行对比分析。结果表明:当跨高比较小,翼缘腹板面积比较大时剪切效应对弯曲变形有显著影响。同时相比于现有解析方法,本文计算结果精度较高且适用范围更广,可用于梁结构设计。  相似文献   

8.
The investigated cantilever beam is characterized by a constant rectangular cross-section and is subjected to a concentrated constant vertical load, to a concentrated constant horizontal load and to a concentrated constant bending torque at the free end. The same beam is made by an elastic non-linear asymmetric Ludwick type material with different behavior in tension and compression. Namely the constitutive law of the proposed material is characterized by two different elastic moduli and two different strain exponential coefficients. The aim of this study is to describe the deformation of the beam neutral surface and particularly the horizontal and vertical displacements of the free end cross-section. The analysis of large deflection is based on the Euler–Bernoulli bending beam theory, for which cross-sections, after the deformation, remain plain and perpendicular to the neutral surface; furthermore their shape and area do not change. On the stress viewpoint, the shear stress effect and the axial force effect are considered negligible in comparison with the bending effect. The mechanical model deduced from the identified hypotheses includes two kind of non-linearity: the first due to the material and the latter due to large deformations. The mathematical problem associated with the mechanical model, i.e. to compute the bending deformations, consists in solving a non-linear algebraic system and a non-liner second order ordinary differential equation. Thus a numerical algorithm is developed and some examples of specific results are shown in this paper.  相似文献   

9.
薄壁杆系结构的梁元分析模型   总被引:1,自引:0,他引:1  
本文导出了用于薄壁杆系结构弹性分析的薄壁梁元分析模型,在空间梁元分析模型^[3]的基础上,采用了一种改进的位移模式,考察了薄壁杆件可能发生的拉压,剪切,弯曲,扭转和翘曲等各变形形式以及它们的耦合效应,得出了相应的单元形函数,同时从工程应变的定义出发,采用Taylor级数展开的方法,建立了单元的五阶近似正交变表达式,并建立了相应的薄壁单元刚度方程,从而得出了局部坐标系下单元刚度矩阵的显式,根据本文所导出的薄壁梁元分析模型,编制了相应的结构计算程序,通过算例验证了本文所推导的单元刚度矩阵,同时通过与传统空间梁元计算模型计算结果的比较,阐述了截面翘曲对薄壁杆系结构的影响。  相似文献   

10.
对材料力学中梁的弯曲应力公式增加一修正项,以反映短梁弯剪翘曲变形对应力分布的影响。提出一种根据短梁横截面边界形状及艾瑞应力函数求解应力修正项的方法,应用弹性力学空间问题的一般理论,通过应力平衡方程、应变相容方程及应力边界条件,建立了关于任意截面短梁的应力修正项及剪应力的基本方程。在所建立的基本方程基础上,导出了矩形截面和圆形截面短梁修正应力的具体计算公式,该修正应力与均布荷载大小及弹性模量与剪切模量之比均成正比,但与截面惯性矩成反比。数值算例表明,本文方法计算的应力与通用有限元软件ANSYS计算的结果吻合良好,从而验证了本文方法及其基本公式的正确性。  相似文献   

11.
基于Reddy高阶梁的轴向位移模式,考虑组合梁界面滑移变形,利用最小势能原理建立了Reddy组合梁弯曲问题的控制微分方程和边界条件,,并将控制方程转化为含12个基本未知量的一阶常微分方程组,给出一般求解方法和解表达式。其次,研究了横向均布荷载作用下Reddy简支组合梁的弯曲,所得结果与有限元解吻合良好,说明本文解析解的有效性和可靠性。最后,数值分析了组合梁界面滑移剪切刚度kcs、弹性模量-剪切模量比E/G、梁长-高比L/h和子梁厚度比hs/hc等参数对Reddy简支组合梁弯曲的影响。分析表明:滑移刚度显著影响横截面应力的分布;组合梁长-高比越小、弹性模量-剪切模量比越大或界面滑移刚度越大,组合梁的剪切效应对其挠度影响越显著,此时不宜忽略其剪切变形。  相似文献   

12.
A simply supported glass/polyvinyl butyral (PVB)/glass beam is modelled by plane finite elements. The distribution of strain and stress through the beam thickness and along its axis is obtained as a result of linear finite element analysis. It shows that the bending stress in the glass layers is determinant for the load-bearing capability of laminated glasses, but the shear in the PVB-interlayer plays an important role for glass-layer interaction. A mathematical model of triplex glass beam is derived, consisting of a bending curvature differential equation and a differential equation of PVB-interlayer shear interaction. The derived equations are solved analytically with boundary conditions of simply supported beam under uniform transverse load. A parametric study of the derived mathematical model is carried out. The model is utilized for lightweight structure optimization of layer thicknesses. The results of the optimization show that laminated glasses could be superior to monolithic glasses.  相似文献   

13.
不同模量理论弹性支承连续梁及框架   总被引:2,自引:0,他引:2  
弹性支承连续梁及框架结构的内力不仅与各杆件的刚度有关,而且与支承结构的刚度有关.当引入拉压不同模量后,各杆件的抗弯刚度EI不再为常数(与经典力学不同),而是内力的函数,使结构内力计算成为非线性问题.用分段积分法推导出不同模量弹性支承连续梁及框架的中性轴公式和内力计算表达式并编制非线性内力计算迭代程序.通过实例计算对比分析不同模量与经典力学相同模量两种方法计算结果的差异,最后提出对该类结构计算的合理建议以及利用不同模量对结构进行优化的结论.  相似文献   

14.
In this study, a simplified theory for functionally graded thin plates with different moduli in tension and compression is proposed. Based on the classical Kirchhoff hypothesis, a mechanical model concerning tension-compression subzone is established, first. Using the geometrical and physical relations and equation of equilibrium, all stress components are expressed in terms of the deflection, in which modulus of elasticity in tensile and compressive zone are regarded as two different functions while Poisson's ratios are taken as two different constants. Via the equilibrium conditions and continuity conditions, the governing equation expressed in terms of the deflection as well as the unknown neutral layer are derived, respectively. Moreover, the application in polar coordinates, the strain energy and the perturbation solution for the unknown neutral layer, are discussed in detail. The results indicate that the bending stiffness derived in this study play an important role while contacting the classical problem and this problem. The analytical solutions from equilibrium conditions and continuity conditions are consistent. Analyses of more general cases for modulus of elasticity and Poisson's ratio also show the applicability of the simplified theory. This study provides a theoretical basis for the subsequent work.  相似文献   

15.
唐媛  卿海 《应用力学学报》2020,(2):785-792,I0023
基于修正偶应力理论及表面弹性理论,本文提出了一种新的双曲线剪切变形梁模型,用于均匀微尺度梁的静态弯曲分析。该理论可以直接利用本构关系获得横向剪切应力,满足梁顶部和底部的无应力边界条件,避免了引入剪切修正因子。根据广义Young-Laplace方程建立了梁的内部与表面层的应力连续性条件,单一的变量场可以描述梁的位移模式。通过在位移场中考虑表面层厚度以及表面层的应力连续条件,可以使新模型能够更准确地预测微尺寸和表面能相关的尺度效应。通过Hamilton原理推导出了梁的控制方程和边界条件。应变能除了考虑经典弹性理论,还要考虑微结构效应和表面能。Navier-type的解析解适用于简支边界条件,而基于拉格朗日插值的微分求积法(DQEM)可以研究在不同边界条件下的力学响应。把该数值解与Navier方法得出的解析解作了对比,得出:微尺度梁在考虑表面能或微尺寸效应、不同载荷和梁高变化下的响应一致;当不考虑微结构相关性和表面能效应时,该模型退化为经典的欧拉梁模型。  相似文献   

16.
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.  相似文献   

17.
Based on the neo-classical elastic energy of liquid crystal elastomers, the opto-mechanical behavior is modeled by considering the effect of photoisomerization on the nematic-isotropic transition of liquid crystal phase. Linearized stress–strain relation is derived for infinitesimal deformations with a very unusual shear stress that does not vanish identically as in the case of the soft behavior but is proportional to the rotation of directors. In other words, the shear stress depends on both the shear strain and the skew symmetric part of the displacement gradient with the shear modulus induced by the effect of photoisomerization. Finite element implementation for plane stress problems is obtained through a self-defined material subroutine in ABAQUS FEA tool. Numerical simulations show that the light induced deformations of two dimensional specimens consist of contractions, expansions and bending in different directions. The stress distributions indicate that the driving force for the light induced bending is produced by the bending moment of the normal stress along the director, while the other stress components are much smaller for two dimensional beam shaped specimens. However, the shear stress of the soft LCE is generally nonzero under light illumination due to the inhomogeneity of the opto-mechanical effect. It can be concluded from the strain distributions that the transversal plane cross section could remain plane after deformation if the light intensity or the decay distance is not too small and the sample is in the deep nematic phase. However, the shear strain and in plane rotation are of the same order as the other strain components, and thus should not be neglected. This indicates that the classical simple bending assumptions such as the Euler–Bernoulli beam theory should not be directly applied to model the light induced bending of neo-classical liquid crystal elastomers due to the soft behavior of the materials.  相似文献   

18.
In the present paper, a new sinusoidal higher-order plate theory is developed for bending of exponential graded plates. The effects due to transverse shear and normal deformations are both included. The number of unknown functions involved in the present theory is only five as against six or more in case of other shear and normal deformation theories. The theory accounts for sinusoidal distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. Based on the sinusoidal shear and normal deformation theory, the position of neutral surface is determined and the governing equilibrium equations based on neutral surface are derived. There is no stretching–bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of present theory are compared with three-dimensional elasticity solutions and other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and efficient in predicting the bending response of exponential graded plates.  相似文献   

19.
In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.  相似文献   

20.
The higher-order theory is extended to functionally graded beams (FGBs) with continuously varying material properties. For FGBs with shear deformation taken into account, a single governing equation for an auxiliary function F is derived from the basic equations of elasticity. It can be used to deal with forced and free vibrations as well as static behaviors of FGBs. A general solution is constructed, and all physical quantities including transverse deflection, longitudinal warping, bending moment, shear force, and internal stresses can be represented in terms of the derivatives of F. The static solution can be determined for different end conditions. Explicit expressions for cantilever, simply supported, and clamped-clamped FGBs for typical loading cases are given. A comparison of the present static solution with existing elasticity solutions indicates that the method is simple and efficient. Moreover, the gradient variation of Young’s modulus and Poisson’s ratio may be arbitrary functions of the thickness direction. Functionally graded Rayleigh and Euler–Bernoulli beams are two special cases when the shear modulus is sufficiently high. Moreover, the classical Levinson beam theory is recovered from the present theory when the material constants are unchanged. Numerical computations are performed for a functionally graded cantilever beam with a gradient index obeying power law and the results are displayed graphically to show the effects of the gradient index on the deflection and stress distribution, indicating that both stresses and deflection are sensitive to the gradient variation of material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号