首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
众多微尺度实验已经证实了一些材料在微纳尺度下的力学行为具有尺寸效应.这种现象采用经典的弹性理论无法得到合理的解释,因而需要新的理论,修正偶应力理论就是其中一种.采用修正偶应力理论研究微纳尺度下两端自由铁木辛柯双层梁受热载荷后的弯曲响应,考虑两层之间存在弱界面.获得了梁的挠度、曲率以及界面剪力等表达式,并与经典弹性力学的结果进行了比较.通过分析计算可知,采用修正偶应力理论可预测微纳尺度下双层梁的尺寸效应,而当梁的特征尺寸远大于其材料的内禀尺度时,则与经典理论的结果一致.  相似文献   

2.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。  相似文献   

3.
张培  何天虎 《力学学报》2018,50(3):508-516
现有的广义热弹理论主要适用于求解时间尺度极短但空间尺度仍属宏观尺度的广义热弹问题的动态响应,而当所研究的弹性体的特征几何尺寸也属微尺度时,弹性体的力学响应将呈现出强烈的尺寸相关性,现有的广义热弹理论不再适用. 本文基于通过非局部效应和记记依赖微分修正的广义热弹性理论,研究了两端固定、受移动热源作用的有限长热弹杆的动态响应. 建立了问题的控制方程,给出了问题的初始条件及边界条件,运用拉普拉斯变换及其数值反变换,对方程进行了求解. 数值计算中,首先考察了时间延迟因子对模型所预测各物理量分布的影响;然后对比了模型中的时间延迟因子在两种不同类别核函数下(通过归一化条件修正和未修正形式)对各物理量分布的影响效应;最后考察了考虑新的可以描述尺寸效应的非局部因子对无量纲温度、位移及应力的影响,并用图形进行了示例. 结果表明, 时间延迟因子增大,各物理量的峰值变大,传播距离变小,且时间延迟因子在归一化条件修正过的核函数下影响更加显著;非局部参数几乎不影响无量纲温度的分布,轻微影响无量纲位移的分布,但对无量纲应力的峰值的影响显著.   相似文献   

4.
基于新修正偶应力理论,建立了能描述尺度效应的各向异性功能梯度微梁的屈曲分析模型。基于最小势能原理推导了控制方程及边界条件,并以简支梁为例分析了屈曲载荷及尺度效应受材料尺度参数和几何尺寸的影响。算例结果表明,在材料几何尺寸较小时,本文模型预测到的屈曲载荷明显大于传统理论的结果,有效地反映了尺度效应。几何尺寸较大时,尺度效应消失,本文模型将自动退化为传统宏观模型。模型反映出不同方向上的尺度参数对各向异性材料影响的效果不同。  相似文献   

5.
形状记忆合金(Shape Memory Alloys, SMAs)因其具有形状记忆效应和超弹性,在航空航天、生物医疗、微机电系统领域中得到了广泛的应用.当微结构尺度达到微纳米,表面效应对微结构力学性能的影响是十分显著的.本文基于梁弯曲变形理论以及Gurtin-Murdoch表面弹性理论,考虑拉压不对称、温度对于SMA纳米梁的影响,建立了考虑表面效应的SMA纳米梁相变力学模型.分析了弯曲载荷、温度、表面残余应力以及表面弹性模量对SMA纳米梁力学性能的影响规律.研究表明在SMA纳米梁相变阶段,忽略和考虑表面效应所得的截面应力及应变相对误差较为明显;在相同弯矩下,随温度的增加SMA纳米梁的截面应力随之增加,并且表面效应对其影响有减小趋势;表面残余应力对SMA纳米梁的影响显著.该文研究结果为SMA纳米梁在微机电领域的设计以及应用提供了一定基础与依据.  相似文献   

6.
在建立弹性支撑功能梯度薄壁微圆柱壳模型的基础上,基于修正的偶应力理论和一阶剪切变形理论,推导了微圆柱壳的模态频率方程,讨论了弹性支撑、尺寸效应、温度梯度、材料组分指数、孔隙以及几何尺寸等参数对微圆柱壳模态频率的影响。结果表明:微尺度下,弹性刚度系数在0~105 N/m3范围内对微圆柱壳的模态频率基本无影响,剪切刚度系数在0~5×104 N/m范围内对模态频率的影响较大,且增大剪切刚度系数有益于提高微圆柱壳的模态频率;由修正的偶应力理论得到的模态频率大于由经典连续体理论得到的模态频率;在弹性支撑和尺寸效应有无考虑的4种组合下,模态频率随温度梯度和微圆柱壳长度的增大而减小,随陶瓷体积分数指数的增大而增大,随孔隙体积分数和微圆柱壳厚度的变化规律不同;温度梯度对考虑尺寸效应或弹性基础的微圆柱壳模态频率影响较大,而孔隙调节具弹性支撑微圆柱壳的模态频率尤其显著。  相似文献   

7.
在考虑横向剪切变形对层合板弹性解的影响时,本文提出一种数值计算方法。由边界条件给出边界结点位移的表达式,根据薄板的经典理论和一阶横向剪切变形理论导出位移增量所满足的平衡微分方程,引用经典理论计算的横向剪力修正了荷载列阵。致使在较粗的网格划分时、宽广的层合板长厚比范围内,仍能得到与解析解颇为一致的数值解。  相似文献   

8.
基于修正的应变梯度理论和精化的高阶剪切变形理论,提出了一种含尺度效应的功能梯度三明治微梁模型。功能梯度材料的等效弹性参数由Mori-Tanaka均匀化方法描述。针对微梁的高阶边值问题,融合微分求积和Gauss-Lobatto求积准则,建立了一种2节点18自由度的微分求积有限元。通过对比性研究,验证了理论及数值模型的有效性。最后,讨论了边界条件、材料尺度参数、功能梯度指数、长细比、各层厚度比等对功能梯度三明治微梁静动态特性的影响。结果表明,功能梯度三明治微梁的静力响应、振动频率、屈曲荷载以及模态均呈现出显著的尺度效应,所得结果有望为微机电系统中承载器件的设计提供数据积累和方法依据。  相似文献   

9.
现有的广义热弹理论主要适用于求解时间尺度极短但空间尺度仍属宏观尺度的广义热弹问题的动态响应,而当所研究的弹性体的特征几何尺寸也属微尺度时,弹性体的力学响应将呈现出强烈的尺寸相关性,现有的广义热弹理论不再适用.本文基于通过非局部效应和记记依赖微分修正的广义热弹性理论,研究了两端固定、受移动热源作用的有限长热弹杆的动态响应.建立了问题的控制方程,给出了问题的初始条件及边界条件,运用拉普拉斯变换及其数值反变换,对方程进行了求解.数值计算中,首先考察了时间延迟因子对模型所预测各物理量分布的影响;然后对比了模型中的时间延迟因子在两种不同类别核函数下(通过归一化条件修正和未修正形式)对各物理量分布的影响效应;最后考察了考虑新的可以描述尺寸效应的非局部因子对无量纲温度、位移及应力的影响,并用图形进行了示例.结果表明,时间延迟因子增大,各物理量的峰值变大,传播距离变小,且时间延迟因子在归一化条件修正过的核函数下影响更加显著;非局部参数几乎不影响无量纲温度的分布,轻微影响无量纲位移的分布,但对无量纲应力的峰值的影响显著.  相似文献   

10.
基于精化锯齿理论和新修正偶应力理论,建立了能够准确预测功能梯度夹心微板挠度、位移和应力的静弯曲模型。为了描述微板不同方向上的尺度效应,将两个正交材料尺度参数引入本文模型。以受双向正弦载荷作用的简支板为例,探究了夹心微板弯曲行为中尺度效应对结构刚度的影响。算例结果表明,当微板几何参数与材料尺度参数接近时,基于本文模型所测微板的最大弯曲挠度、局部位移和应力均小于传统精化锯齿理论给出的结果,捕捉到了尺度效应;尺度效应随着微板几何尺寸的增大而逐渐减弱,当微板几何尺寸远大于材料尺度参数时,尺度效应消失。此外,板的跨厚比和功能梯度变化指数也会对尺度效应产生一定影响。  相似文献   

11.
A quasi-three dimensional model is proposed for the vibration analysis of functionally graded(FG) micro-beams with general boundary conditions based on the modified strain gradient theory. To consider the effects of transverse shear and normal deformations, a general displacement field is achieved by relaxing the assumption of the constant transverse displacement through the thickness. The conventional beam theories including the classical beam theory, the first-order beam theory, and the higherorder beam theory are regarded as the special cases of this model. The material properties changing gradually along the thickness direction are calculated by the Mori-Tanaka scheme. The energy-based formulation is derived by a variational method integrated with the penalty function method, where the Chebyshev orthogonal polynomials are used as the basis function of the displacement variables. The formulation is validated by some comparative examples, and then the parametric studies are conducted to investigate the effects of transverse shear and normal deformations on vibration behaviors.  相似文献   

12.
An exact computational method for the shear stiffness of beams with circular cross sections and arbitrarily radially inhomogeneous Young’s modulus is presented. We derive the displacement and stress field of a cantilever beam according to 3D theory of elasticity, which requires to solve just a 1D linear boundary value problem. The shear stiffness is obtained by setting the shear strain energy from the exact solution equal to that from technical beam theory. Results and closed analytical formulae are given for several functionally graded and layered cross sections.  相似文献   

13.
A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This theory uses rotation–displacement as dependent variable and contains only one material length scale parameter. Hamilton’s principle is employed to derive the governing equations of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli–Euler beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numerical results show that the present beam models can capture the scale effects of the natural frequencies of the micro-structure.  相似文献   

14.
15.
Summary An efficient one-dimensional model is developed for the statics of piezoelectric sandwich beams. Third-order zigzag approximation is used for axial displacement, and the potential is approximated as piecewise linear. The displacement field is expressed in terms of three primary displacement variables and the electric potential variables by satisfying the conditions of zero transverse shear stress at the top and bottom and its continuity at layer interfaces. The deflection field accounts for the piezoelectric transverse normal strain. The governing equations are derived using a variational principle. The present results agree very well with the exact solution for thin and thick highly inhomogeneous simply supported hybrid sandwich beams. The developed theory can accurately model open and closed circuit boundary conditions. The first author is grateful to DST, Government of India, for financial support for this work.  相似文献   

16.
Timoshenko梁通过假设截面的剪切刚度和附加平均剪切转角变形的方式来近似修正初等梁中未考虑剪切变形能的问题,这与梁剪应力沿梁高变化的实际不符。本文基于材料力学剪应力计算式和相应的剪切变形理论,从剪切变形与梁的位移关系入手,导出矩形梁考虑剪切变形时的纵向位移沿梁高方向的函数关系式,证明该位移可分解为纯弯曲引起的位移和剪力引起的剪力滞翘曲位移之和。应用剪力滞广义坐标与广义力的概念,基于能量变分原理得到等截面梁剪力滞控制微分方程组及其通解形式。对均布荷载作用下矩形简支梁的算例分析表明,本文算法与弹性力学精确解对比,两者的应力和挠度剪力滞系数求解结果非常接近,本文算法有足够的精度,且比弹性力学简单。  相似文献   

17.
A new non-classical Kirchhoff plate model is developed using a modified couple stress theory, a surface elasticity theory and a two-parameter elastic foundation model. A variational formulation based on Hamilton’s principle is employed, which leads to the simultaneous determination of the equations of motion and the complete boundary conditions and provides a unified treatment of the microstructure, surface energy and foundation effects. The new plate model contains a material length scale parameter to account for the microstructure effect, three surface elastic constants to describe the surface energy effect, and two foundation moduli to represent the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the newly developed plate model includes the models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases and recovers the Bernoulli–Euler beam model incorporating the microstructure, surface energy and foundation effects. To illustrate the new model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulas derived. For the static bending problem, the numerical results reveal that the deflection of the simply supported plate with or without the elastic foundation predicted by the current model is smaller than that predicted by the classical model. Also, it is observed that the difference in the deflection predicted by the new and classical plate models is very large when the plate thickness is sufficiently small, but it is diminishing with the increase of the plate thickness. For the free vibration problem, it is found that the natural frequency predicted by the new plate model with or without the elastic foundation is higher than that predicted by the classical plate model, and the difference is significant for very thin plates. These predicted trends of the size effect at the micron scale agree with those observed experimentally. In addition, it is shown both analytically and numerically that the presence of the elastic foundation reduces the plate deflection and increases the plate natural frequency, as expected.  相似文献   

18.
A detailed variational formulation is provided for a simplified strain gradient elasticity theory by using the principle of minimum total potential energy. This leads to the simultaneous determination of the equilibrium equations and the complete boundary conditions of the theory for the first time. To supplement the stress-based formulation, the coordinate-invariant displacement form of the simplified strain gradient elasticity theory is also derived anew. In view of the lack of a consistent and complete formulation, derivation details are included for the tutorial purpose. It is shown that both the stress and displacement forms of the simplified strain gradient elasticity theory obtained reduce to their counterparts in classical elasticity when the strain gradient effect (a measure of the underlying material microstructure) is not considered. As a direct application of the newly obtained displacement form of the theory, the problem of a pressurized thick-walled cylinder is analytically solved. The solution contains a material length scale parameter and can account for microstructural effects, which is qualitatively different from Lamé’s solution in classical elasticity. In the absence of the strain gradient effect, this strain gradient elasticity solution reduces to Lamé’s solution. The numerical results reveal that microstructural effects can be large and Lamé’s solution may not be accurate for materials exhibiting significant microstructure dependence.  相似文献   

19.
A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of surface layer and microstructures sizedependency. The mid-plane stretching of a beam is incorporated using von-Karman nonlinear strains. Hamilton’s principle is used to determine the nonlinear governing equation of motion and the corresponding boundary conditions. As a case study, pull-in instability of an electromechanical nano-bridge structure is studied using the proposed formulation. The nonlinear governing equation is solved by the analytical reduced order method (ROM) as well as the numerical solution. Effects of various parameters including surface layer, size dependency, dispersion forces, and structural damping on the pullin parameters of the nano-bridges are discussed. Comparison of the results with the literature reveals capability of the present model in demonstrating the impact of nanoscale phenomena on the pull-in threshold of the nano-bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号