首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于欧拉-伯努利梁理论,分析钢桁腹-混凝土组合梁桥的受弯性能。考虑到腹杆在纵向的不连续性,通过对腹杆进行受力分析,将腹杆的受力等效为轴力和面内弯矩,分别作用在顶板和底板上。引入奇异函数建立梁挠曲的微分方程,根据支座边界条件和腹杆节点的位移协调方程求解出所有的未知系数,得到了顶板和底板在不同荷载下的挠曲函数以及腹杆的轴力。根据腹杆的轴力确定腹杆的破坏荷载以及破坏形式。最后通过ANSYS建立实体有限元模型,对比了不同腹杆倾角下顶板的挠度和腹杆轴力,计算结果与有限元结果误差在5%左右。说明该方法能计算在弯曲荷载下,任意点的挠度和所有腹杆的轴力,计算方法既简单又能满足精度要求。  相似文献   

2.
悬臂梁集中载荷大挠度弯曲变形的一种解   总被引:2,自引:1,他引:1  
利用数值积分法求解了细长杆悬臂梁受集中载荷时大挠度弯曲问题,并分别对无限长及有限长细杆悬臂梁进行了讨论,提出细长杆悬臂梁所受最大弯矩计算方法,为梁的强度校核提供了依据  相似文献   

3.
在专用汽车开发中,遇到有磨擦时细长杆受集中载荷时大挠度弯曲变形件的设计问题,本文利用数值积分法对此进行讨论,提出有摩擦时细长杆悬臂梁所受最大弯矩计算方法,同时就磨擦力对变形的影响进行了分析,为此类杆件的强度计算提供依据。  相似文献   

4.
针对离心法生产的环形钢管混凝土桩,外径Ф400、内径Ф220,钢管厚度6mm,钢管材料Q235B,混凝土强度等级C80,运用试验和理论分析方法研究其弯曲性能.试验表明,钢管与混凝土端部界面无滑移,协同工作性能良好,弹性极限弯矩290kNm,相应的挠跨比1/450;塑性极限弯矩394kNm,相应的挠跨比1/100;在挠度达到跨度的1/30时,弯矩-挠度曲线仍然处于上升阶段,最大试验弯矩430kNm,相应的延性系数15.运用材料力学原理,忽略两种材料界面间的粘结滑移,认定受拉区混凝土开裂退出工作,推导建立其塑性抗弯承载力计算方法,计算值与试验值基本吻合.研究表明,环形钢管混凝土桩具有很高的抗弯承载力和优越的弯曲延性,具有良好的抗震性能.  相似文献   

5.
为了揭示在役混凝土电杆连接接头的破坏机理和承载性能,进行了6根两类不同杆长、跨中带钢圈接头的混凝土电杆的抗弯承载力试验,通过试验观察了各试件的受力全过程和破坏形态,获取了弯矩-挠度曲线、裂缝宽度-弯矩曲线、刚度退化规律曲线以及极限弯矩等重要指标.对比分析了两种杆长试件的承载力和刚度变化规律,并通过试验拟合,提出了相关刚度退化规律公式.研究结果表明,试件所具有的破坏形态大多为混凝土拉裂、接头钢圈不屈服,破坏具有明显的脆性;截面的平均应变符合平截面假定;杆长较短试件的极限承载力显著大于较长杆长的试件;裂缝宽度-弯矩曲线大致经历了4个阶段:即未开裂阶段、逐渐增长阶段、稳定发展阶段、快速开裂阶段;杆长较短试件的初始弹性刚度以及弹塑性刚度都比较长杆长试件的大;电杆连接接头的相对刚域范围对杆身受力性能具有极大的影响.  相似文献   

6.
本文基于薄板小挠度弯曲理论,构造出板元内部解析,边界挠度和边界法向弯矩以带补充项的付氏级数逼近,同时考虑域内多点支承作用的板元位移函数,给出了一处适用于任意支承条件下连续板系结构的有限板块法求解格式。数值计算结果表明:本文的方法具有良好的计算精度和计算效率,适于工程应用。  相似文献   

7.
陈齐风  徐赵东  郝天之  沈涛胜  于孟生 《应用力学学报》2020,(2):666-673,I0014,I0015
提出了一种设置反拱结构的拱桥加固方法,该方法是通过在主拱圈拱肋下方设置反拱,在反拱和拱肋之间用竖杆相连,并通过抗弯预埋件和抗剪锚栓把反拱的拱脚和拱肋连接,使反拱结构和原主拱圈共同形成结构受力体系。本文基于有限元参数分析方法,通过设置6个不同参数:拱的矢高f1、拱的拱轴系数m1、反拱的矢高f2、反拱的拱轴系数m2、反拱与待加固拱的等效半径比i、反拱纵向长度与待加固拱的总跨径的比值Kr,以考虑不同拱桥、反拱结构参数对原拱桥关键截面内力、跨中挠度及整体屈曲系数的影响。基于大量计算数据的参数拟合,分别获得跨中弯矩、跨中挠度、拱脚弯矩、拱脚推力、整体屈曲系数的拟合表达式。通过对拟合数据的分析,获得了反拱加固的拱桥结构力学特性的相关变化规律。最后对一个100m跨径拱桥进行加固计算分析,结果表明:本文提出的加固方法不但可以显著提高待加固桥梁的整体刚度与稳定性,而且可有效地降低主拱关键截面的内力。  相似文献   

8.
本文提出了在空间受力状态中,不知道弯曲主轴的情况下钢管截面弯矩和轴力测定的电测方法,并在一汽-大众合资涂装车间梁板结构钢管承重支架实测中得到应用,证实了该方法的可靠性。  相似文献   

9.
用“膜力因子法”分析简支刚塑性圆板的大挠度动力响应   总被引:4,自引:1,他引:4  
余同希  陈发良 《力学学报》1990,22(5):555-565
在板的变形过程中,当其挠度与厚度同量级时,膜力的作用与弯矩的作用同样重要;当其挠度超过厚度甚至接近板的面内尺寸的量级时,相对于弯矩的作用,膜力的作用是更主要的。本文发展了一种基于能量平衡的简便的“膜力因子法”,有效地解决了当板的挠度达到厚度量级时弯矩和膜力联合作用问题;用这种方法并结合塑性膜阶段的分析成功地求解了简支刚塑性圆板在冲击载荷作用下的大挠度塑性响应问题。所得结果与Florence实验结果符合良好,比已有理论近似结果有所改进。  相似文献   

10.
本文发展了具有任意连接和约束的空间杆系结构静力分析的回传波矩阵法。以杆端位移和转角为基本未知量,通过结构所有节点的平衡方程和位移协调条件,推导出传递分配矩阵和载荷源向量,并进一步利用设定的同一杆件两个局部坐标系下杆端位移之间的关系,最终得到结构的回传矩阵。据此可求出结构所有杆件的杆端位移及杆端内力。对不同的杆件连接形式,如刚接、铰接、半刚接,以及不同的约束情况,如固定支座、铰支座、定向支座等,本文推导出了空间杆系结构的回传波矩阵表达式,可直接用于相应空间杆系结构内力的计算。同时,针对一个具体刚架结构进行了算例分析,并通过与弯矩分配法和有限元结果的比较,验证了本文方法的精确度。  相似文献   

11.
利用弹塑性理论对卷管施加弯矩载荷时的截面屈服过程进行了理论分析,得出了卷管上卷时卷管所能承受的极限弯矩;通过实例分析得出X65钢在发生塑性应变为2.5%时的卷管两端截面夹角为1.98rad、滚筒直径为5.05m、极限弯矩为99.2kN m。根据DNV-OS-F101和API-RP-1111的相关规定,可将99.2kN m界定为对卷管施加弯矩的上限值;卷管弯矩上限值对应卷管上卷时的滚筒直径上限值,表明卷管上卷时可通过滚筒直径来限制卷管弯矩值。本文结果可为深水管线卷轴铺设的应用提供理论依据。  相似文献   

12.
侧向弯曲屈曲及侧向弯扭屈曲均为钢-混凝土组合梁负弯矩区钢梁的重要屈曲模式,而现有计算方法通常只考虑到侧向弯曲屈曲,未考虑到侧向弯扭屈曲,因此有一定局限性。本文在钢梁腹板对钢梁下翼缘的转动约束刚度及侧向约束刚度的计算公式上,结合弹性介质中薄壁杆件的屈曲理论推导了工形钢-混凝土组合梁负弯矩区的侧向弯曲屈曲弯矩及侧向弯扭屈曲弯矩计算公式。实例分析表明,现有计算方法均存在一定理论缺陷,本文计算方法更为合理;同时,本文计算式比现有文献中同类型计算式更为简洁,便于手算,实用性强并适于工程应用。  相似文献   

13.
框架结构中某柱发生失效会造成梁跨度增加,进而导致梁的内力增大、跨中挠度变大,作用在失效柱上方节点的荷载组合也由负弯矩转变为同时存在的拉力和正弯矩.针对此工况,本文对在正弯矩和拉力作用下的刚性钢-混凝土组合节点进行内力分析,采用内力平衡法推导了拉弯承载力公式,并与相应的组合梁及钢梁的公式进行对比.同时利用ABAQUS有限元软件建立组合节点的有限元分析模型,得到不同参数下钢-混凝土组合节点的拉弯相关曲线,并与本文所提出的公式的计算结果进行了对比,两者吻合较好,为刚性组合节点在拉力和正弯矩共同作用下的拉弯受力设计提供了一定的参考依据.  相似文献   

14.
为了揭示中墩斜支承对连续箱梁力学性能的影响,本文考虑约束扭转和竖向挠曲耦合作用,建立了斜支承连续箱梁的力法方程,并获得了内力和变形的解析式.选取斜支承两跨连续箱梁为数值算例,分别计算了竖向对称和偏心均布荷载作用下的内力和变形,并用ANSYS软件计算了控制截面的弯矩.计算结果表明,本文方法计算的弯矩与ANSYS计算值吻合...  相似文献   

15.
This paper describes the design, construction and testing of a load cell to measure the axial force, shear force, and bending moment at the end of a structural beam. The capacities of the load cell are 780 kN in axial load, 350 kN in shear, and 200 kNm in bending. These magnitudes, together with the requirement that the load cell should be kept as slim as possible, necessitated a novel design comprising three steel double-spring elements machined with semicircular channels to provide localized strain amplification. The load cell was designed with the aid of detailed finite element analysis and was machined from grade 55 steel. After strain gaging, it was subjected to an extensive series of calibration tests. Results from these tests are reported, together with those from some early experiments in which two load cells were used to measure the behavior of structural steel knee elements.  相似文献   

16.
In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.  相似文献   

17.
刘天一  陈素文 《力学与实践》2014,36(2):207-209,206
为了提高弯矩分配法的计算速度和精度,将弯矩分配传递的过程视为多个等比数列的运算过程. 在第一轮弯矩分配与传递结束后,可得出各个等比数列的首项和公比,并利用等比数列公式直接求和求得精确解.提出了含有3 个分配点结构的弯矩分配公式法,在弯矩传递中采用双向传递,并通过等比数列公式求精确解.以结构、载荷均不对称的两跨刚架为例,将手算与电算结果进行比较,验证了该方法求解的精确性和实用性.  相似文献   

18.
黄钟民  谢臻  张易申  彭林欣 《力学学报》2021,53(9):2541-2553
发展了一种求解面内变刚度功能梯度薄板弯曲问题的神经网络方法. 面内变刚度薄板弯曲问题的偏微分控制方程为一复杂的4阶偏微分方程, 传统的基于强形式的神经网络解法在求解该偏微分方程时可能会遇到难以收敛、边界条件难以处理的情况. 本文基于Kirchhoff薄板弯曲理论, 提出了一种直角坐标系下任意面内变刚度薄板弯曲问题的神经网络解法. 神经网络模型包含挠度网络与弯矩网络, 分别用于预测薄板的挠度与弯矩, 从而将求解4阶偏微分方程转换为求解一系列二阶偏微分方程组, 通过对挠度、弯矩试函数的构造可使得神经网络计算结果严格满足边界条件. 在误差的反向传播中, 根据本文提出的误差函数公式计算训练误差并结合Adam优化算法更新模型的内部参数. 求解了不同边界条件、形状的面内变刚度薄板弯曲问题, 并将所得计算结果与理论解、有限元解进行对比. 研究表明, 本文模型对于求解面内变刚度薄板弯曲问题具备适应性, 虽然模型中的弯矩网络收敛较挠度网络要慢, 但本文方法在试函数的构造上更为简单、适应性更强.   相似文献   

19.
本文采用渐进积分法研究了超静定梁?柱的弯曲问题. 首先建立超静定梁?柱的四阶挠度微分方程, 考虑到边界条件和连续光滑条件, 采用连续分段独立一体化积分法求解得到了挠度的精确解析解. 为了满足工程设计需要, 构造了超静定梁?柱的四阶挠度微分迭代方程, 选取无轴向力作用时超静定梁的挠曲线作为梁的初函数, 将初函数代入梁的四阶挠度微分迭代方程进行积分, 利用边界条件和连续光滑条件确定积分常数, 得到下一次迭代挠度函数, 依次进行迭代积分运算. 计算出了最大挠度、最大转角和最大弯矩等用轴向力放大系数表示的多项式解析函数解. 本文选取了两种边界条件下受分布力作用的超静定梁?柱进行分析, 计算结果表明, 当超静定梁?柱所受的轴向力小于欧拉临界力的1/2时, 迭代六次误差就可以控制在1%以内; 不仅梁?柱最大位移和最大内力的大小随轴向力的增大而增大, 而且其位置也随轴向力的增大而发生迁移. 本文的研究对揭示轴向力对超静定梁?柱变形和内力的影响有重要意义, 为超静定梁?柱的实际设计提供了一定的理论基础.   相似文献   

20.
In this paper a solution of deflection in the form of Fourier-Bessel double series with supplementary terms is proposed to analyse bending and vibration problems of thin elastic sector plate with various edge conditions. This solution is suitable to a wider range, convenient for calculation and it is in an analytical form. As computational examples, the distribution curves of deflection and bending moment of plates with various sector angles, simply supported or clamped along the radial edges under uniform or concentrated load are obtained and the result are compared with the numerical results of related references. Thus the range of application of the Fourier series method with supplementary terms is extended. Frequencies and nodal lines in free vibration of plates with various sector angles simply supported along the radial edges are also given in this paper.Communicated by Hsueh Dai-wei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号