首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the mechanical buckling and free vibration of thick rectangular plates made of functionally graded materials (FGMs) resting on elastic foundation subjected to in-plane loading is considered. The third order shear deformation theory (TSDT) is employed to derive the governing equations. It is assumed that the material properties of FGM plates vary smoothly by distribution of power law across the plate thickness. The elastic foundation is modeled by the Winkler and two-parameter Pasternak type of elastic foundation. Based on the spline finite strip method, the fundamental equations for functionally graded plates are obtained by discretizing the plate into some finite strips. The results are achieved by the minimization of the total potential energy and solving the corresponding eigenvalue problem. The governing equations are solved for FGM plates buckling analysis and free vibration, separately. In addition, numerical results for FGM plates with different boundary conditions have been verified by comparing to the analytical solutions in the literature. Furthermore, the effects of different values of the foundation stiffness parameters on the response of the FGM plates are determined and discussed.  相似文献   

2.
针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将非均匀Winkler弹性地基上变厚度矩形板无量纲化的自由振动控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程。数值结果退化为均匀Winker弹性地基上矩形板以及变厚度矩形板的情形,并与已有文献采用的不同求解方法进行比较,结果表明,DTM具有非常高的精度和很强的适用性。最后,在不同边界条件下分析地基变化参数、厚度变化参数和长宽比对矩形板无量纲固有频率的影响,并给出了非均匀Winkler弹性地基上对边简支对边固定变厚度矩形板的前六阶振型。  相似文献   

3.
为研究弹性地基上含孔隙的材料特性沿厚度呈Sigmoid函数变化的功能梯度材料(S-FGM)板的振动特性,本文基于改进的Voigt模型,分别建立了孔隙为均匀分布和非均匀分布两种类型的功能梯度材料的物性参数模型。根据复合材料薄板理论导出了弹性地基上含孔隙的功能梯度材料板的运动方程,用伽辽金法寻求四边简支边界条件下板自由振动和动力响应的解析解;讨论了孔隙、弹性地基参数、材料组分指数等因素对S-FGM板自由振动和动力响应的影响。结果表明:孔隙对板自振频率的影响比较复杂,不仅与孔隙率的大小和分布形式有关,还与弹性地基参数有关;当有弹性地基作用时,板的量纲归一化基频随着孔隙率的增大而提高,并且孔隙均匀分布的S-FGM板与孔隙非均匀分布的情况相比,其量纲归一化基频更高;孔隙增大了板的动力响应,其中孔隙为均匀分布的板的动力响应对孔隙率的变化更为敏感。  相似文献   

4.
基于Euler-Bernoulli梁理论,利用广义Hamilton原理推导得到弹性地基上转动功能梯度材料(FGM)梁横向自由振动的运动控制微分方程并进行无量纲化,采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,计算了弹性地基上转动FGM梁在夹紧-夹紧、夹紧-简支和夹紧-自由三种边界条件下横向自由振动的无量纲固有频率,再将控制微分方程退化到无转动和地基时的FGM梁,计算其不同梯度指数时第一阶无量纲固有频率值,并和已有文献的FEM和Lagrange乘子法计算结果进行比较,数值完全吻合。计算结果表明,三种边界条件下FGM梁的无量纲固有频率随无量纲转速和无量纲弹性地基模量的增大而增大;在一定无量纲转速和无量纲弹性地基模量下,FGM梁的无量纲固有频率随着FGM梯度指数的增大而减小;但在夹紧-简支和夹紧-自由边界条件下,一阶无量纲固有频率几乎不变。  相似文献   

5.
In this paper free vibration of continuous grading fiber reinforced (CGFR) annular plates on an elastic foundation, based on the three-dimensional theory of elasticity, for different boundary conditions at the circular edges is investigated. The foundation is described by the Pasternak or two-parameter model. The CGFR annular plates have an arbitrary variation of fiber volume fraction in the thickness direction. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Besides, results for CGFR plate with arbitrary variation of fiber volume fraction in the thickness direction of the plate are compared with discrete laminated composite plate. The main contribution of this work is to present useful results for continuous grading of fiber reinforcement in the thickness direction of a plate on an elastic foundation and comparison with similar discrete laminated composite plate. The interesting and new results show that non-dimensional natural frequency parameters of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. The new results can be taken as the benchmark solutions for those from numerical methods and future researches.  相似文献   

6.
V. Tahouneh  M. H. Naei 《Meccanica》2014,49(1):91-109
This paper is motivated by the lack of studies in the technical literature concerning to the three-dimensional vibration analysis of bi-directional FG rectangular plates resting on two-parameter elastic foundations. The formulations are based on the three-dimensional elasticity theory. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. This paper presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D FGM that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D FGM.  相似文献   

7.
Free vibration analysis of moderately thick rectangular FG plates on elastic foundation with various combinations of simply supported and clamped boundary conditions are studied. Winkler model is considered to describe the reaction of elastic foundation on the plate. Governing equations of motion are obtained based on the Mindlin plate theory. A semi-analytical solution is presented for the governing equations using the extended Kantorovich method together with infinite power series solution. Results are compared and validated with available results in the literature. Effects of elastic foundation, boundary conditions, material, and geometrical parameters on natural frequencies of the FG plates are investigated.  相似文献   

8.
采用基于移动最小二乘近似的无网格方法并结合一阶剪切变形理论,分析了非均匀弹性地基上变厚度加筋板的弯曲和固有频率问题.首先,用节点对变厚度板和筋条分别进行离散,导出变厚度板和筋条的势能;其次,利用筋条与变厚度板之间的位移协调条件将筋条的节点参数转换为板的节点参数,再将两者的势能进行叠加得到变厚度加筋板的总势能,并根据能量法得到其动能;最后,利用最小势能原理及Hamilton原理分别得到弯曲控制方程与振动控制方程.由于采用的方法不能直接施加位移边界,故采用完全转换法处理位移边界.本文先计算变厚度板的弯曲及非均匀弹性地基板的固有频率,与文献对比验证方法的有效性;然后对非均匀弹性地基上变厚度加筋板弯曲与 自由振动进行了计算,并将计算结果与有限元结果进行了对比.结果表明,本文方法计算所得结果与文献解及有限元结果之间的误差均小于5%,验证了该方法在计算非均匀弹性地基上变厚度加筋板弯曲与固有频率问题的有效性.  相似文献   

9.
The validity and the range of applicability of the classical plate theory (CPT) and the first-order shear deformation plate theory, also called Mindlin plate theory (MPT), in comparison with three-dimensional (3-D) p-Ritz solution are presented for freely vibrating circular plates on the elastic foundation with different boundary conditions. In order to achieve this purpose, a study of the 3-D elasticity solution is carried out to determine the free vibration frequencies of clamped, simply supported and free circular plates resting on an elastic foundation. The Pasternak model with adding a shear layer to the Winkler model is used for describing the elastic foundation. In addition to being employed the p-Ritz algorithm, the analysis is based on the linear, small strain and 3-D elasticity theory. In this analysis method, a set of orthogonal polynomial series in a cylindrical polar coordinate system is used to arrive eigenvalue equation yielding the natural frequencies for the circular plates. The accuracy of these results is verified by appropriate convergence studies and checked with the available literature and the MPT. Furthermore, the effect of the foundation stiffness parameters, thickness-radius ratio, and different boundary conditions on the ill-conditioning of the mass matrix as well as on the vibration behavior of the circular plates is investigated. Afterwards, the validity and the range of applicability of the results obtained on the basis of the CPT and MPT for a thin and moderately thick circular plate with different values of the foundation stiffness parameters are graphically presented through comparing them with those obtained by the present 3-D p-Ritz solution. Finally, the phenomenon of mode shape switching is investigated in graphical forms for a wide range of the Winkler foundation stiffness parameters.  相似文献   

10.
无单元法分析弹性地基板   总被引:14,自引:0,他引:14  
弹性地基板的计算是学和工程师们十分关切的问题,本提出了分析Winsler地基、双参数地基和半空间弹性地基板弯曲问题的无单元法,推导了无单元法的插值函数,从变分原理出发导出弹性地基板的刚度矩阵,给出计算实例,与其它的方法的结果进行比较,数值结果表明无单元法具有一系列优点。  相似文献   

11.
吴柏生 《力学学报》1993,25(4):443-451
本文研究弹性基础上受轴向加载的两端铰支杆当其最低两屈曲荷载很近时的后屈曲行为。首先,使用Liapunov-Schmidt约化并借助稳定性分析,揭示了杆的二次屈曲现象;基于分叉方程给出了原始后屈曲分支及二次分支的渐近展开。其次,我们使用作者建立的二次分叉的计算方法对杆的二次屈曲做了数值计算,数值结果与渐近展开符合得很好  相似文献   

12.
The von Kármán type partial differential equations governing non-linear dynamic behaviour of circular plates resting on Winkler and Pasternak elastic foundations have been analysed analytically. The space and time-wise integrations have been carried out employing the Chebyshev polynomials and implicit Houbolt techniques, respectively. The influence of foundation parameters K and G on the large amplitude response of circular plates subjected to step function loads has been studied for both the clamped immovable as well as simply supported immovable edge conditions. Foundation parameters K and G have been determined for the minimax central response. For all values of K,values of G should be between 30 and 40 for the clamped circular plates and the value of G should be a maximum for the simply supported circular plates.  相似文献   

13.
Free vibration analysis of functionally graded (FG) thin-to-moderately thick annular plates subjected to thermal environment and supported on two-parameter elastic foundation is investigated. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle based on the first order shear deformation theory (FSDT). The initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic and FG circular and annular plates. The effects of the temperature rise, elastic foundation coefficients, the material graded index and different geometrical parameters on the frequency parameters of the FG annular plates are investigated. The new results can be used as benchmark solutions for future researches.  相似文献   

14.
Free transverse vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation are presented here using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method on the basis of classical plate theory. Gram-Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of nonhomogeneity parameters, aspect ratio and thickness variation together with foundation parameter on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported and free edges correct to four decimal places. Three dimensional mode shapes for specified plate for all the four boundary conditions have been plotted. A comparison of results in special cases with published one has been presented.  相似文献   

15.
The general bending problem of conical shells on the elastic foundation (Winkler Medium) is not solved. In this paper, the displacement solution method for this problem is presented. From the governing differential equations in displacement form of conical shell and by introducing a displacement function U(s,θ), the differential equations are changed into an eight-order soluble partial differential equation about the displacement function U(s,θ) in which the coefficients are variable. At the same time, the expressions of the displacement and internal force components of the shell are also given by the displacement function U(s θ). As special cases of this paper, the displacement function introduced by V.S. Vlasov in circular cylindrical shell[5], the basic equation of the cylindrical shell on the elastic foundation and that of the circular plates on the elastic foundation are directly derived.Under the arbitrary loads and boundary conditions, the general bending problem of the conical shell on the elastic foundation is reduced to find the displacement function U(s,θ).The general solution of the eight-order differential equation is obtained in series form. For the symmetric bending deformation of the conical shell on the elastic foundation, which has been widely usedinpractice,the detailed numerical results and boundary influence coefficients for edge loads have been obtained. These results have important meaning in analysis of conical shell combination construction on the elastic foundation,and provide a valuable judgement for the numerical solution accuracy of some of the same type of the existing problem.  相似文献   

16.
This paper reviews studies and analyzes results on the effect of discrete ribs on the dynamic characteristics of rectangular plates and cylindrical shells. Use is made of the vibration equations derived from the classical theories of beams, plates, and shells. The effect of Pasternak’s elastic foundation on the critical velocities of a structurally orthotropic model of a ribbed cylindrical shell is determined. Nonstationary problems are solved for perforated and ribbed shells of revolution filled with a fluid or resting on an elastic foundation and subjected to moving or impulsive loads. Results from studies of the behavior of sandwich shell structures under impulsive loads of various types are presented  相似文献   

17.
The bending vibrations of polygonal (L-shaped) plates with different shapes and boundary conditions are studied. The natural frequencies are calculated using the inverse-iteration and Kantorovich-Vlasov methods. To take the configuration of the domain into account, the fictitious domain method and an analog of the force method of structural mechanics are used. Different trends in the dependence of the lowest natural frequency of an L-shaped plate on its geometry are illustrated for different boundary conditions.Acorrelation between the extreme values of the bending frequency and some relations for the energy characteristics of the plate is established __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 5, pp. 63–72, May 2007.  相似文献   

18.
基于双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板的屈曲问题. 首先,基于能量法与变分原理,给出了梯度弹性基础上正交异性薄板的屈曲控制方程,并得到了梯度弹性基础刚度系数K1 与K2的计算式;进而,通过将位移函数采用三角函数展开的方法,给出了单向压缩载荷作用下、四边简支正交异性弹性基础板屈曲载荷的计算式;在算例中,通过将该文的解退化到单纯的正交异性板,并与经典弹性解比较,证明了理论的正确性;最后,求解了弹性模量在厚度方向上呈幂律分布的梯度基础上的薄板屈曲问题,分析了基础上下表层材料弹性模量比与体积分数指数对屈曲载荷的影响.  相似文献   

19.
The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak’s model or Winkler’s model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.  相似文献   

20.
《力学快报》2019,9(5):312-319
In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thin plates on elastic foundations, the static problem of circular thin plates on Gibson elastic foundation is solved using an iterative method based on the modified Vlasov model. On the basis of the principle of minimum potential energy, the governing differential equations and boundary conditions for circular thin plates on modified Vlasov foundation considering the characteristics of Gibson soil are derived. The equations for the attenuation parameter in bending problem are also obtained, and the issue of unknown parameters being difficult to determine is solved using the iterative method. Numerical examples are analyzed and the results are in good agreement with those form other literatures. It proves that the method is practical and accurate. The inhomogeneity of modified Vlasov foundations has some influence on the deformation and internal force behavior of circular thin plates. The effects of various parameters on the bending of circular plates and characteristic parameters of the foundation are discussed. The modified model further enriches and develops the elastic foundations. Relevant conclusions that are meaningful to engineering practice are drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号