首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
复合材料广泛应用于航空航天等领域,追求轻量化设计已经成为研究重点。对复合材料层合板质量优化设计,可以减少层合板的纤维用量,减小层合板的质量,降低成本。首先研究复合材料层合板在承受轴向载荷时,产生的形变量、应力示意图,分析容易发生失效部位;以层合板铺层厚度为设计变量,最大应变、铺层比例等为约束条件,最小化层合板质量为优化目标,对碳纤维复合材料层合板铺层厚度等设计变量进行优化,利用强度理论对优化结果进行校核,结合力学试验对比分析优化前后层合板力学性能。结果表明:碳纤维复合材料层合板经过优化后,总质量减轻约16.7%,优化后的层合板满足复合材料强度理论,实验结果与软件仿真具有一致性,说明优化方法是合理可靠的。  相似文献   

2.
This paper proposes a numerical simulation of interlaminar damage propagation in FRP laminates under transverse loading, using the finite element method. First, we conducted drop-weight impact tests on CFRP cross-ply laminates. A ply crack was generated at the center of the lowermost ply, and then a butterfly-shaped interlaminar delamination was propagated at the 90/0 ply interface. Based on these experimental observations, we present a numerical simulation of interlaminar damage propagation, using a cohesive zone model to address the energy-based criterion for damage propagation. This simulation can address the interlaminar delamination with high accuracy by locating a fine mesh near the damage process zone, while maintaining computational efficiency with the use of automatic mesh generation. The simulated results of interlaminar delamination agreed well with the experiment results. Moreover, we demonstrated that the proposed method reduces the computational cost of the simulation.  相似文献   

3.
The past developments on tow-placement technology led to the production of machines capable of controlling fibre tows individually and placing them onto the surface of a laminate with curvilinear topology. Due to the variation of properties along their surface, such structures are termed variable-stiffness composite panels.In previous experimental research tow-steered panels have shown increased buckling load capacity as compared with traditional straight-fibre laminates. Also, numerical analyses by the authors showed that first-ply failure occurs at a significant higher load level. The focus of this paper is to extend those analyses into the postbuckling progressive damage behaviour and final structural failure due to accumulation of fibre and matrix damage. A user-developed continuum damage model implemented in the finite element code ABAQUS® is employed in the simulation of damage initiation and material stiffness degradation.In order to correctly predict the buckling loads of tow-steered panels under compression, it is of crucial importance to take into account the residual thermal stresses resulting from the curing process. Final failure of tow-steered panels in postbuckling is predicted to within 10% difference of the experimental results. Curvilinear-fibre panels have up to 56% higher strength than straight-fibre laminates and damage initiation is also remarkably postponed. Tow-steered designs also show more tolerance to central holes than traditional laminates.  相似文献   

4.
Defect-free and defected composite thin shells with ply orientation (90/0/ ± 75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177°C (350°F) and the operational temperature was 21°C (70°F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/ ± 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/ ± 75), defective composite shell was compared with the (90/0/ ± θ), where θ = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/ ± 75) has the least damage tolerant of the two compared defective shells with the (90/0/ ± θ), θ = 45 and 60 laminates.  相似文献   

5.
The presence in a laminate of plies oriented at 90° with respect to the preferred direction of load generates almost immediately the appearance in these plies of cracks transverse to the load (parallel to the fibres in the lamina). These cracks reach the interface with the neighbouring ply, which in this paper will be considered oriented 0° with respect to the direction of the load. This may cause the bifurcation of the crack, which now appears propagating as a delamination crack between the two plies. The objective of this study is to characterize the stress state at the tip of both, the transverse crack in the 90° ply reaching the interface with the 0° ply, and the delamination crack for different lengths of the debonding. The analysis is performed by means of the Boundary Element Method allowing contact, without or with friction, to take place between the faces of the crack. The plies are considered as equivalent homogeneous bodies under a generalized plane strain state. The results are compared with those predicted by the open and contact models of Interfacial Fracture Mechanics. Accurate knowledge of the stress state at the neighbourhood of the tips of the cracks studied is necessary to generate failure criteria based on Fracture Mechanics parameters to predict the appearance and growth of the type of damage described.  相似文献   

6.
对含铺层拼接的碳纤维增强树脂基复合材料层合板进行了剪切强度实验研究.从三种不同铺层拼接角层合板上切取含缺口的剪切试件,通过实验测定了其载荷-位移曲线,得到了剪切强度值.实验结果表明,三组试件的剪切强度基本相同,即拼接层角度改变几乎不会引起层合板的剪切强度发生明显变化.采用有限元软件ABAQUS6.5对实验过程进行模拟,得到拼接层角度改变将引起拼接层中0°层出现切应力集中,但沿缺口切应力的平均值几乎不变.这也说明拼接层角度的变化几乎不影响层合板的剪切强度.  相似文献   

7.
A theoretical approach is presented for analyzing the ply cracking in general symmetric laminates subjected to any combination of in-plane mechanical loading and uniform temperature changes. The equivalent constraint model proposed by the authors in a previous work is used to account for the cracking interaction between laminae in the laminates. By using a superposition scheme and the stress field solutions the energy release rate for a ply cracking is explicitly expressed as a function of stiffness reduction parameters of the laminates. The ratio of mode I to mode II is introduced for construction of the fracture criterion. The effects of the laminate parameters and the crack spacing on the energy release rate and the mode mixity are illustrated. Finally, the model is used to predict the thermomechanical load for the first-ply-cracking. Project supported by the National Natural Science Foundation of China (No. 19972076) and the Germen Research Foundation (DFG).  相似文献   

8.
本文采用三维有限元模型,对典型铺设的[0_2/±45_2/90_2]_s碳/环氧复合材料层板中分层伴以横向裂纹的产生和扩展导致的层间应力分布进行了分析。计算结果表明层间裂纹首先在90°层中部出现并开裂至相邻界面处而产生横向裂纹,横向裂纹的出现引起局部分层按三角形状扩展;并指出分层损伤过程是一个主导性的稳定扩展过程,这是导致刚度下降的主要因素。最后,数值计算结果与实验结果比较,两者是吻合的。  相似文献   

9.
大开口复合材料层合板强度破坏研究   总被引:5,自引:2,他引:3  
陈建霖  励争  储鹏程 《力学学报》2016,48(6):1326-1333
复合材料层合板的各向异性及非均质,使得复合材料层合板内部的破坏形式非常复杂.在复合材料结构的设计中,为满足制造及使用功能上的需求,在复合材料层合板承力结构件上不可避免地需要设计各种开口.然而,含大开口复合材料层合板的强度破坏问题变得更为复杂,使得现有的强度理论面临新的挑战.针对碳纤维增强复合材料大开口层合板受单向拉伸载荷作用下的强度破坏问题进行了数值分析和实验研究.首先,根据Hashin准则和刚度退化模型,对含不同圆形开口尺寸的[0]_(10)单向铺层、[0/90]_5和[±45]_5正交铺层的层合板,进行了单向拉伸载荷作用下渐进失效的数值模拟分析,获得了对应结构的极限载荷和破坏模式.在此基础上,采用数字图像相关方法,进行复合材料大开口层合板强度破坏的实验研究.研究结果表明,大开口复合材料层合板在单向拉伸加载下主要呈现脆性破坏形式,破坏起始位置处于应力集中区.此外,破坏强度和失效模式与复合材料铺层方式和开口尺寸大小密切相关.其中[±45]_5铺层的开口层合板承载能力最弱,分层破坏最严重.开口尺寸越大,结构的极限载荷值越低.同实验测试结果相比,数值模拟对复合材料层合板的损伤失效分析略显不足,往往很难全面分析复合材料层合板破坏失效过程中的各种因素的影响.  相似文献   

10.
含孔复合材料层合板静拉伸三维逐渐损伤分析   总被引:19,自引:2,他引:19  
针对面内静拉伸纤维增强复合材料含中孔层合板,发展了参数化三维逐渐损伤模型. 该模型 可以模拟含中孔层合板损伤起始、发展及最终结构破坏整个过程,并能较好地预测含中孔层 合板的破坏模式和破坏强度. 采用所发展的模型和有限元三维逐渐损伤分析技术即应力分 析、失效判定准则及损伤过程中材料性能退化等,对其他文献所提供的9种不同类型含中孔层合板进行了损伤扩展分析及强度预测,同时对层合板的损伤基本机理、类型及其相互关联作用进行了探讨,计算结果与文献实验结果非常吻合.  相似文献   

11.
作者通过实验研究了碳纤维增强复合材料迭层板(CFRP)连接孔在温湿环境条件下的静强度和疲劳寿命,实验结果用图表和曲线加以描绘。对“失效”试件,利用“揭层技术”(Deply Tecnique),渗透剂增强的X射线图象法(TBE)以及扫描电镜方法(SEM)进行损伤检测分析,揭示了连接孔周围脱层和纤维断裂等损伤情况,对温湿条件下疲劳寿命降低等实验现象,在细观上进行损伤机理分析。本文并对各种损伤检测方法进行了比较。  相似文献   

12.
李飞  聂国隽 《力学季刊》2019,40(2):265-273
连续丝束剪切(Continuous Tow Shearing, CTS)铺放技术是一种新的变角度层合板制作技术,这种新技术能显著减少丝束铺放过程中产生的丝束重叠和间隙等缺陷,然而,采用CTS技术铺设时,层合板的厚度将随着纤维角度的变化而变化.本文基于一阶剪切变形理论并应用Chebyshev-Ritz法对这种变厚度的变角度复合材料层合板的热屈曲问题进行了研究.假设纤维方向角沿板的长度方向按照线性变化,获得了均匀温度变化时变厚度层合板的临界热屈曲荷载.通过与现有文献的比较验证了本文方法的正确性,并进一步讨论了纤维铺设技术、纤维方向角的变化以及边界条件的不同对变角度复合材料层合板的临界屈曲温度的影响.研究结果表明,在体积相同的情况下,采用CTS铺设较传统的自动丝束铺放(AFP)可以进一步提升变角度层合板的临界屈曲温度.本文的研究结果可为变角度复合材料的设计提供一定的参考.  相似文献   

13.
Six reinforced concrete beams strengthened in flexure using carbon fiber reinforced polymer (CFRP) laminates subjected to different sustaining loads were tested. The main goal of the test is to examine the effects of initial load and load history on the ultimate strength of strengthened reinforced concrete beams by externally bonded CFRP laminates. The main experimental parameters include different levels of sustaining load at the time of strengthening and load history. To explain the experimental results in quantitative terms, a theoretical model for flexural behavior of the strengthened reinforced concrete beam is also developed. Test results in the current study show that sustaining load levels at the time of strengthening have important influence on the ultimate strength of strengthened reinforced concrete beams. If the initial load is basically same, the ultimate strength of reinforced concrete beams strengthened with CFRP laminates is almost same regardless of load history at the time of strengthening.  相似文献   

14.
An experimental study was conducted to determine the influence of load factor on fiber fracture development and residual strength of fatigue loaded unidirectional graphite/epoxy composite laminated. 8-phy composite laminates with a layer of release cloth imbedded at the middle ply were fatigued at different load levels and were examined for fiber fracture and residual strength at several stages of life based on the average number of cycles to failure (according to S-N data). From the experimental results, it is evident that the number of fiber fractures is nearly constant after the first few percent of the life. It is also suggested that the load level is much more important than the number of cycles of loading in the determination of the state of fiber fracture. This behavior was interrupted at high load levels (S60% Su where the final fracture was highly affected by the longitudinal matrix splittings. Residual strength is found to be independent of the global fiber fracture density, and to be controlled by local behavior such as matrix cracking, local clustering of fiber fractures, and other local stress concentrations.  相似文献   

15.
Alessi  Roberto  Ciambella  Jacopo  Paolone  Achille 《Meccanica》2017,52(4-5):1079-1091

The hybridisation of fibres reinforced laminates, i.e., the combined use of two or more families of fibres, is an effective technique to achieve a pseudo-ductile response and overcome the inherent brittleness which limits the wider use of composite materials. In this paper, a one-dimensional analytical model for unidirectional hybrid laminates is derived. The model considers two elastic–brittle layers bonded together by a cohesive elasto–plastic–brittle interface. This formulation is applied to the study of the debonding and fracture of laminates under uniaxial loading and the results compared to experiments available from the open literature. This study shows that the proposed model provides a close fit to the experimental data and it is able to match accurately the crack patterns seen in the experiments. The model predicts four different failure mechanisms and is able to discriminate among them according to the geometrical and mechanical properties of the layers.

  相似文献   

16.
基于近场动力学方法,综合分析了破片的速度、层合板的铺层方式、加筋板的筋条尺寸和破片相对筋条的冲击位置对结构损伤模式和破片剩余速度的影响。结果显示:高速破片冲击作用下,层合板会发生侵彻和穿透现象,层合板的损伤模式以基体损伤为主,且随着破片冲击速度的增大,板上下表面的损伤区域呈现出一种先增大后减小的趋势;高速破片冲击作用下,层合的板损伤扩展方向和纤维铺设方向有关,对于纤维铺层方向相同的层合板,其上下表面的损伤扩展方向一般与纤维方向相同;加筋板通过增加少量质量可以获得比层合板更好的抗破片冲击性能,且加筋板的筋条尺寸和破片相对筋条的冲击位置对加筋板的损伤具有明显影响。  相似文献   

17.
一种FRP累积损伤模型及其在结构疲劳寿命估算中的应用   总被引:10,自引:0,他引:10  
推荐了一种应变损伤累积模型,能够考虑单向板面内多轴应力和平均应力的影响。只需要单向板在确定应力比下的若干典型疲劳试验结果,就可以预测相同材料体系多向层压结构在不同应力比的循环载荷下的疲劳寿命,有助于降低试验成本和工作量。研究了适用于多向层压结构剩余强度估算和疲劳寿命预测的步骤和程序。针对碳纤维/树脂基T300/QY8911复合材料,试验测定了三组典型单轴循环应力([0]16拉-拉、[90]16拉-拉和[0/90]4S剪-剪)下的S-N曲线。以此为输入,预测四种多向铺层板在各种拉-拉循环应力下的疲劳寿命,寿命预测结果和相应的试验结果吻合良好。采用了保持计算和试验的载荷/强度比相对等值的方法来近似抵消层合效应对疲劳寿命的影响。强调了进一步发展能够定量估计层间应力影响与分层扩展过程的疲劳损伤模型的重要性。  相似文献   

18.
A novel experimental technique is developed for time-resolved detection and tracking of damage in the forms of delamination and matrix cracking in layered materials such as composite laminates. The technique is non-contact in nature and uses dual or quadruple laser interferometers for high temporal resolution. Simultaneous measurements of differential displacement and velocity at individual locations are obtained to analyze the initiation and progression of interfacial fracture and/or matrix cracking/delamination in a polymer matrix composite laminate system reinforced by graphite fibers. The measurements at multiple locations allow the speeds at which interfacial crack front (mode-I) or matrix cracking/delamination front (mode-II dominated) propagates to be determined. Experiments carried out use three-point bend configurations. Impact loading is achieved using a modified Kolsky bar apparatus with a complete set of diagnostics for load, deformation, deformation rate, and input energy measurement. This technique is used to characterize the full process of damage initiation and growth. The experiments also focused on the quantification of the speed at which delamination or damage propagates under primarily mode-I and mode-II conditions. The results show that the speed of delamination (mode-I) or the speed of matrix cracking/delamination (primarily mode-II) increases linearly with impact velocity. Furthermore, speeds of matrix failure/delamination under primarily mode-II conditions are much higher than the speeds of mode-I crack induced delamination under mode-I conditions.  相似文献   

19.
含材料非线性的复合材料单钉接头累积损伤分析   总被引:7,自引:0,他引:7  
发展了静拉伸复合材料接头层合板三维逐渐损伤模型,考虑了单层复合材料在材料1-2面及3-1面上具有明显非线性剪切应力-应变关系的叠层非线性效应,结合有限元技术即应力分析、失效判定准则及损伤过程中材料性能退化等,对接头层合板损伤扩展进行了模拟,结果表明考虑材料非线性的影响与实验结果吻合更好.  相似文献   

20.
碳纳米管/碳纤维增强复合材料(carbon nanotube/carbon fibre reinforced plastic,CNT/CFRP)是一种多尺度复合材料,比传统CFRP有更好的综合性能和更广阔的应用前景。对CNT/CFRP在低速冲击下的响应和破坏进行了数值模拟研究。首先,基于先前的研究通过引入基体增韧因子、残余强度因子并改进损伤耦合方程,建立了新的FRP动态渐进损伤模型;然后,利用新建立的本构模型并结合黏结层损伤模型,对4种碳纳米管含量的增韧碳纤维增强树脂基复合材料层合板在5个能量下的冲击实验进行了数值模拟;最后,将模拟结果与文献中的相关实验结果进行了比较,并讨论了冲击速度的影响。结果表明:新建立的FRP本构模型能够预测CNT/CFRP层合板在低速冲击载荷作用下的响应、破坏过程和分层形貌,模拟得到的载荷-位移曲线和破坏形貌与实验吻合较好;冲击速度会影响CNT/CFRP层合板拉伸和压缩破坏的比例,相同的冲击能量下,更大的冲击速度会造成更多的拉伸破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号