首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct and inverse problems of a fracture mechanics based RC beam model are solved. Solution of the direct problem that maps crack bridging stresses into crack opening displacements (COD) is straightforward, but the inverse problem is ill-posed, and better solved by the theory of inverse problems. This paper exploits the Tikhonov regularization method to solve the inverse problem, and estimates the force and location of rebar in buried concrete from CODs. Bending tests are carried out on model RC beams in the laboratory to demonstrate the applicability of the method. During the tests, a microscopic camera snaps high resolution digital pictures of cracked concrete surface. The images are analyzed by a software to measure surface CODs that are input into the inverse problem. The practical CODs inevitably include noise due to experimental error, which makes the inverse problem ill-posed, and necessitates regularization. In the current inverse analysis by the Tikhonov regularization method, bridging stress profiles, i.e. variation of the crack bridging stress along the crack length, has been figured out. Results are compared with those from other theoretical methods of analysis as well as with the readings from strain gauges. The method is a suitable non-destructive means for existing structures in cases where the section information is inadequate, or damages/repairs have altered the designed cross-section.  相似文献   

2.
复合材料桥连的断裂动力学模型   总被引:8,自引:0,他引:8  
复合材料产生裂纹后,其纤维处形成“桥连”,这是一个不可避免的现象。由于桥连问题很复杂.在数学方法的处理上有很大困难,至今人们研究大多是桥连的静力学问题.而对其动力学问题研究得很少。为了便于分析复合材料的问题,将桥连处用载荷代替,当裂纹高速扩展时.其纤维也连续地断裂。只有建立复合材料的桥连动力学模型,才能更好地研究复合材料的断裂动力学问题。通过复变函数论的方法,将所讨论的问题转化为Riemann—Hilbert问题。利用建立的动态模型和自相似方法,得到了正交异性体中扩展裂纹受运动的集中力P及阶跃载荷作用下位移、应力和动态应力强度因子的解析解,并通过叠加原理,最终求得了该模型的解。  相似文献   

3.
吕念春  程靳 《力学季刊》2002,23(4):504-508
复合材料产生裂纹后,其纤维处形成“桥连”,这是一个不可避免的现象。由于桥连问题很复杂,在数学方法的处理上有很大困难,至今人们研究的大多是桥连的静力学问题,而对其动力学问题研究得很少。只有建立复合材料的桥连动力学模型,才能更好地研究复合材料的断裂动力学问题。为了便于分析复合材料的问题,将桥连处用载荷代替,当裂纹高速扩展时,其纤维也连续地断裂。通过复变函数论的方法,将所讨论的问题转化为Riemann-Hilbet问题。利用建立的动态模型和自相似方法,得到了正交异性体中扩展裂纹受运动的集中力Px/t及均布载荷作用下位移、应力和动态应力强度因子的解析解,并通过迭加原理,最终求得了该模型的解。  相似文献   

4.
Crack bridging is an important source of crack propagation resistance in many materials and the bridging stress distribution as a function of crack opening displacement is widely believed to represent a true material property uninfluenced by sample geometry, loading conditions, and other extrinsic factors. Accordingly, accurate measurement of the bridging stress distribution is needed and many non-destructive methods have been developed. However, there are many challenges to accurately determining bridging stresses. A comparison of bridging stresses measured using R-curve, crack opening displacement (COD), and spectroscopy methods has been made using two bridging ceramics, Y2O3 and MgO doped Si3N4 and 99.5% pure Al2O3. The COD method is surface sensitive and gives a lower peak bridging stress compared to the R-curve technique which samples through the entire material thickness. This is attributed to a more compliant near surface bridging zone. Conversely, when R-curves rise steeply over the first few micrometers of growth from a notch, an effect of negative T-stress is expected to raise the R-curve determined peak bridging stress. Spectroscopy methods were only found to yield reliable bridging stress results if a reasonable through thickness volume of material is sampled. It was found that 2.5% of the specimen thickness achieved using fluorescence spectroscopy appears adequate for Al2O3 while 0.1–0.2% of the sample thickness achieved using Raman spectroscopy for Si3N4 appears inadequate. Overall, it is concluded that in the absence of T-stresses a bridging distribution can be determined that is a true material property. Also, a new method is proposed for determining the bridging stresses of fatigue cracks from (1) the bridging stress distribution for monotonically loaded cracks and (2) experimental fatigue data.  相似文献   

5.
数值流形法的求解体系建立在两套覆盖(包括数学覆盖和物理覆盖) 和接触环路的基础之上,实现了对连续和非连续问题的统一求解. 在处理裂纹问题时,数学覆盖无需与裂纹重合,方便岩体破坏过程的模拟. 通过在裂纹尖端影响区域内的物理片上增加用于模拟应力奇异性的增强位移函数,发展了扩展的数值流形法. 在此基础上,提出一种多裂纹扩展的控制算法,并给出了裂纹扩展过程中材料体的整体响应. 针对典型的线弹性断裂力学问题, 给出的数值算例表明所建议的方法是正确有效的.   相似文献   

6.
By using Fourier transformation the boundary problem of periodical interfacial cracks in anisotropic elastoplastic bimaterial was transformed into a set of dual integral equations and then it was further reduced by means of definite integral transformation into a group of singular equations. Closed form of its solution was obtained and three corresponding problems of isotropic bimaterial, of a single anisotropic material and of a bimaterial of isotropy- anisotropy were treated as the specific cases. The plastic zone length of the crack tip and crack openning displacement ( COD) decline as the smaller yield limit of the two bonded materials rises, and they were also determined by crack length and the space between two neighboring cracks . In addition , COD also relates it with moduli of the materials .  相似文献   

7.
In this paper a new finite element (FE) formulation to simulate embedded strong discontinuity for the study of the fracture process in brittle or quasi-brittle solids is presented. A homogeneous discontinuity is considered to be present in a cracked finite element with the possibility to take into account the opening and the sliding phenomena which can occur across the crack faces. In such a context a new simple stress-based implementation of the discontinuous displacement field is proposed by an appropriate stress field correction introduced at the Gauss points level in order to simulate, in a fashion typical of an elastic–plastic classical FE formulation, the mechanical effects of the bridging and friction stresses due to crack faces opening and sliding which can occur during the loading–unloading process structural component or solid being analysed. The proposed formulation does not need to introduce special or modified shape functions to reproduce discontinuous displacement field but simply relaxes the stress field in an appropriate fashion. Both linear elastic and elastic–plastic behaviour of the non-cracked material can be considered. Several 2D problems are presented and solved by the proposed procedure in order to predict load–displacement curves of brittle structures as well as crack patterns that develop during the loading process.The proposed discontinuous new FE formulation gives the advantages to be simple, computationally economic and to keep internal continuity of the numerical FE model; furthermore the developed algorithm can be easily implemented in standard FE programs as a standard plasticity model.  相似文献   

8.
在无限大正交各向异性体弹性平面上对复合材料桥纤维平行自由表面的内部中央裂纹提出了桥纤维拔出的动态裂纹模型。通过复变函数将其转化为Reimann-Hilbert混合边界值问题。求得了裂纹在坐标原点受载荷Px/t、Px2/t作用的解析解。利用这一解析解可通过迭加原理求得任意复杂问题的解。  相似文献   

9.
主要研究冲击载荷作用下的三维弹塑性弯曲裂纹尖端的张开位移问题.综合考虑了冲击作用应力,三维塑性区域边界上正应力与剪应力,利用二阶摄动方法计算了三维弹塑性弯曲裂纹尖端的张开位移.用数值解法计算出三维弹塑性弯曲裂纹尖端张开位移,作图分析了三维弹塑性弯曲裂纹尖端张开位移与三维裂纹体几何尺寸之间的变化关系.三维弹塑性弯曲裂纹尖端张开位移随着三维裂纹体厚度的增大而减小,随着三维裂纹体厚度的均匀增大,三维弹塑性弯曲裂纹尖端张开位移尺寸不断减小,减小的幅度越来越小,最终趋于平面应变状态下的弹塑性弯曲裂纹尖端张开位移尺寸.当三维裂纹体几何尺寸相同时,三维弯曲裂纹尖端动态张开位移随外部冲击载荷的不断增大而逐渐增大,三维弯曲裂纹尖端动态张开位移随动荷系数的增大而迅速增大,建立了一个计算三维弹塑性弯曲裂纹尖端动态张开位移的崭新理论模型.  相似文献   

10.
三维裂纹扩展轨迹的边界元数值模拟   总被引:2,自引:0,他引:2  
提出了一种对三维裂纹扩展轨迹进行数值模拟的新方法。采用一种新的具有C^1连续性、高精度的单节点二次边界单元,使边界元(BEM)的分析效率和裂纹张开位移(COD)、应力强度因子(SIF)的精度大大提高。采用裂纹张开位移全场拟合法(GCDFP)求出裂纹面前缘的SIF,所得到的SIF达到与所用的COD资料同样的精度。使用Paris公式求出裂纹前缘各点的裂纹扩展增量,并用三次B样条函数对这些增量进行拟合,得到新的光滑裂纹前缘。根据以上思想方法,开发了具有较高的计算效率和精度的数值模拟软件。此软件可以自动跟踪裂纹扩展,得到裂纹扩展的轨迹。运用该软件对椭圆和矩形裂纹的扩展轨迹进行了数值模拟。其结果与理论上的预言完全一致,裂纹最后都趋于一个圆裂纹,具有实际指导意义。  相似文献   

11.
In the 1920s, a closed-form solution of the moving Griffith crack was first obtained by Yoffe. Based on Yoffe's solution, the Dugdale model for the moving crack case gives a good result. However, the Dugdale model fails when the crack speed is closed to the Rayleigh wave speed because of the discontinuity occurred in the crack opening displacement (COD). The problem is solved in this paper by introducing a restraining stress zone ahead of the crack tip and two velocity functions. The restraining stresses are linearly distributed and related to the velocity of the moving crack. An analytical solution of the problem is obtained by use of the superposition principle and a complex function method. The final result of the COD is continuous while the crack moves at a Rayleigh wave speed. The characteristics of the strain energy density (SED) and numerical results are discussed, and conclusions are given.  相似文献   

12.
A crack with bridging stresses is treated as a superposition of many cracks whose tips are continuously distributed (smeared) along the crack line. The solution is reduced to an integral equation for the components of the applied load associated with crack tips at various locations. This equation, which is equivalent to that previously presented by Planas and Elices (1986), is then generalized to include: (1) time-dependent nonlinear stress-displacement relation for the bridging stresses (rate-effect), and (2) aging viscoelastic behavior of the material in the rest of the structure. The solution leads to an integro-differential equation, whose method of solution by finite differences in space and time is given. The paper presents only the mathematical formulation. Numerical studies applied to concrete, rock and ceramics are planned.  相似文献   

13.
圆盘状裂纹前缘塑性区尺寸及张开位移估计   总被引:1,自引:0,他引:1  
将Dugdale模型推广到三维裂纹问题计算了圆盘状裂纹前缘塑性区尺寸,并结合断裂力学中的Barenblatt-Dugdale裂纹模型和三维J-积分原理计算了圆盘状裂纹前缘张开位移,得到了J-积分与裂纹张开位移的关系,最后用非线性有限元方法对圆盘状裂纹的前缘塑性区尺寸作了数值分析,确定了公式中的未知常数,并对其正确性作了数值验证,本文的工作推广了Dugdale模型的应用范围。  相似文献   

14.
黏弹性体界面裂纹的冲击响应   总被引:3,自引:0,他引:3  
研究两半无限大黏弹性体界面Griffith裂纹在反平面剪切突出载荷下,裂纹尖端动应力强度因子的时间响应,首先,运用积分变换方法将黏弹性混合黑社会问题化成变换域上的对偶积分方程,通过引入裂纹位错密度函数进一步化成Cauchy型奇异积分方程,运用分片连续函数法数值求解奇异积分方程,得到变换域内的动应力强度因子,再用Laplace积分变换数值反演方法,将变换域的解反演到时间域内,最终求得动应力强度因子的时间响应,并对黏弹性参数的影响进行分析。  相似文献   

15.
We study dynamic antiplane cracks in the time domain by the boundary integral equation method (BIEM) based on the integral equation for displacement discontinuity (or crack opening displacement, COD) as a function of stress on the crack. This displacement discontinuity formulation presents the advantage, with respect to methods developed by Das and others in seismology, that it has to be solved only inside the crack. This BIEM is, however, difficult to implement numerically because of the hypersingularity of the kernel of the integral equation. Hence it is rewritten into a weakly singular form using a regularization technique proposed by Bonnet. The first step, following a method due to Sladek and Sladek, consists in converting the hypersingular integral equation for the displacement discontinuity into an integral equation for the displacement discontinuity and its tangential derivatives (dislocation density distribution); the latter involves a Cauchy type singular kernel. The second step is based on the observation that the hypersingularity is related to the static component of the kernel; the static singularity is then isolated and can be expressed in terms of weakly singular integrals using a result due to Bonnet. Although numerical applications discussed in this paper are all for the antiplane problem, the technique can be applied as well to in-plane crack dynamics.

The BIEM is implemented numerically using continuous linear space-time base functions to model the COD on the crack. In the present scheme the COD gradient interpolation is discontinuous at the element nodes while the integral equations are collocated at the element midpoints. This leads to an overdetermined discrete problem which is solved by standard least-squares methods. We use the dynamic BIEM to study a set of problems that appear in earthquake source dynamics, including the spontaneous dynamic crack propagation for a very simple rupture criterion. The numerical results compare favorably with the few exact solutions that are available. Then we demonstrate that difficulties experienced with finite difference simulations of spontaneous crack dynamics can be removed with the use of BIEM. The results are improved by the use of singular crack tip elements.  相似文献   


16.
In this paper, a formulation for limit analysis of three-dimensional masonry structures discretized as rigid block assemblages interacting through no-tension and frictional contact interfaces is developed. Linear and piecewise linearized yield functions are used for rocking, sliding and torsion failure. A simple yield condition has been defined to take into account interaction effects of shear force with torsion and bending moment. Associative flow rules are considered for strain rates. On the basis of the developed governing equations, the limit analysis problem has been formulated as a nonlinear mathematical program. An iterative solution procedure based on linear programming is used to solve the limit analysis problem and to take into account nonlinearities due to the influence of bending moments and shear stresses on torsion strength. The results of experimental investigations on out-of-plane masonry walls constrained at one edge and different examples from literature were considered for validation. Comparison with existing formulations is carried out.  相似文献   

17.
A method for constructing nonlinear equations of elastic deformation of plates with boundary conditions for stresses and displacements at the face surfaces in an arbitrary coordinate system is proposed. The initial three–dimensional problem of the nonlinear theory of elasticity is reduced to a one–parameter sequence of two–dimensional problems by approximating the unknown functions by truncated series in Legendre polynomials. The same unknowns are approximated by different truncated series. In each approximation, a linearized system of equations whose differential order does not depend on the boundary conditions at the face surfaces which can be formulated in terms of stresses or displacements is obtained.  相似文献   

18.
In this paper we consider the problem of identifying an open crack in a longitudinally vibrating rod with smooth variable profile by minimal eigenfrequency data. The crack is assumed to be open during vibration and it is modelled by an elastic spring acting along the rod axis. Most, if not all, the results available in the literature for this inverse problem refer to ideal end conditions, that is the rod is either under free or supported end conditions. As an example of almost optimal result, it is known that the knowledge of the fundamental (positive) natural frequency of the rod under free-free and cantilever end conditions allows for the unique determination of the crack, without any restriction on the damage severity. In this paper we show that the analysis of the analogous crack identification problem for rods under elastically restrained end conditions leads to different results and that, in general, the knowledge of the fundamental frequency belonging to two spectra associated to different end conditions is not sufficient for the uniqueness of the solution. The method we used to solve the inverse problem is of constructive type and it is based on general properties of the eigenfrequencies as functions of the position and severity of the crack. The identification procedure has been tested numerically on rods under various damage scenarios. Numerical results agree well with the theory, even in presence of noisy input data.  相似文献   

19.
采用复变函数论,对反平面条件下的动态裂纹扩展问题进行研究。通过自相似函数的方法可以获得解析解的一般表达式。应用该法可以很容易地将所讨论的问题转化为Riemann—Hilbert问题,并可以相当简单地得到问题的闭合解。文中分别对裂纹面受均布载荷、坐标原点受集中增加载荷、坐标原点受瞬时冲击载荷以及裂纹面受运动集中载荷Px/t作用下的动态裂纹扩展问题进行求解,得到了裂纹扩展位移、裂纹尖端的应力和动态应力强度因子的解析解。应用该解并通过叠加原理,就可以求得任意复杂问题的解。  相似文献   

20.
In this paper a group of stress functions has been proposed for the calculation of a crack emanating from a hole with different shape (including circular, elliptical, rectangular, or rhombic hole) by boundary collocation method. The calculation results show that they coincide very well with the existing solutions by other methods for a circular or elliptical hole with a crack in an infinite plate. At the smae time, a series of results for different holes in a finite plate has also been obtained in this paper. The proposed functions and calculation procedure can be used for a plate of a crack emanating from an arbitrary hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号