首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曲线裂纹和反平面圆形夹杂相交问题   总被引:3,自引:0,他引:3  
建立了和反平面圆夹杂界面相交的曲线裂纹的弱奇异积分方程,利用Cauchy型奇异积分方程主部分析方法研究了穿过反平面圆夹杂界面的曲线裂纹在交点处的奇性应力指数以及交点处角形域内的奇性应力,并根据奇性应力定义了交点处的应力强度因子。通过对弱奇异积分方程的数值求解,可得裂纹端点和交点处的应力强度因子。  相似文献   

2.
利用复变函数方法和叠加原理建立了求解刚性线夹杂问题的弱奇积分方程,利用Cauchy型奇异积分方程主部分方法,研究了穿过反平面圆夹杂界面的曲线型刚性线夹杂在界面交点处点处的奇性应力指数以及交点处角形域内的奇性应力,并定义了交点处的应力奇性因子。利用所得的奇性应力指数,通过对弱奇异积分方程的数值求解,得出了刚性线端点和交点处的应力奇性因子。  相似文献   

3.
The transient analysis of a magnetoelectroelastic medium containing a crack is made under antiplane mechanical and inplane electric and magnetic impacts. The crack is assumed to penetrate through the solid along the poling direction. By using the Fourier and Laplace transforms, the associated mixed boundary value problem is reduced to a Fredholm integral equation of the second kind, which is solved numerically. By means of a numerical inversion of the Laplace transform, dynamic field intensity factors are obtained in the time domain. Numerical results are presented graphically to show the effects of the material properties and applied electric and magnetic impacts on the dynamic intensity factors of COD and stress, and dynamic energy density factors. The results indicate that except for the intensity factors of electric displacement and magnetic induction, other field intensity factors exhibit apparent transient feature. Moreover, they depend strongly on mechanical input as well as electric and magnetic impacts.  相似文献   

4.
ANTIPLANE CIRCULAR INCLUSION WITH A CURVED CRACK CROSSING THE BOUNDARY   总被引:1,自引:0,他引:1  
The weakly singular integral equation used to solve the problem of the curved crack crossing the boundary of the antiplane circular inclusion is presented. Using the principal part analysis method of the Cauchy type integral equation, the singular stress index at the intersection and the singular stress of angular regions near the intersection are obtained. By using the singular stress obtained, the stress intensity factor at the intersection is, defined. After the numerical solution of the integral equation, the stress intensity factors at the end points of the crack and intersection are obtainable. The research is supported by National Natural Science Foundation of China (No. 59879012) and is the project of Chinese Foundation of State Education Commission (No. 98024832).  相似文献   

5.
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular, which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies. The project supported by the National Natural Science Foundation of China (19872002) and Climbing Foundation of Northern Jiaotong University  相似文献   

6.
The transient response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric impacting loads is investigated in the present paper. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain, which are solved numerically. The dynamic stress and electric displacement factors are obtained as the functions of time and geometry parameters. The present study shows that the presence of the dynamic electric field will impede or enhance the propagation of the crack in piezoelectric ceramics at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the space of the cracks and the crack length.  相似文献   

7.
This paper provides the solution to the problem of dissimilar, homogeneous semi-infinite strips bonded through a functionally graded interlayer and weakened by an embedded or edge interfacial crack. The bonded system is assumed to be under antiplane deformation, subjected to either traction-free or clamped boundary conditions along its bounding planes. Based on the Fourier integral transform, the problem is formulated in terms of a singular integral equation which has a simple Cauchy kernel for the embedded crack and a generalized Cauchy kernel for the edge crack. In the numerical results, the effects of geometric and material parameters of the bonded system on the crack-tip stress intensity factors are presented in order to quantify the interfacial fracture behavior in the presence of the graded interlayer.  相似文献   

8.
周期界面裂纹反平面问题的动态应力强度因子   总被引:1,自引:0,他引:1  
章梓茂 《力学学报》1991,23(6):750-754
在研究动载荷作用下复合材料层板结构的安全与可靠性问题以及在抗震设计中关于地层裂缝的运动等问题中,都与界面裂纹有关。本文研究了分布于两个半空间之间的周期界面裂纹在反平面剪切波作用下裂纹尖端应力强度因子的动态特性。文中利用有限 Pourier变换,将在一个周期带内的边值问题转化成求解一个带周期性奇异核的积分方程,再借助于Chebyshev 多项式求得问题的级数解,最后分析了应力场在裂纹尖端的奇异性,得到了裂纹尖端动态应力强度因子的计算公式,并通过数值计算给出了应力强度因子随入射波频率变化的特性曲线。  相似文献   

9.
研究两种材料界面上的刚性线与其它任意位置处直线裂纹弹性干涉的反平面问题。基于界面上刚性线与任意位置处螺型位错干涉的基本解,运用连续位错密度模型法将问题转化为奇异积分方程。用半开型积分法求解奇异积分方程,得到位错密度函数的离散值,计算裂纹尖端处的应力强度因子。算例说明该方法可用于工程实际问题。  相似文献   

10.
The contour integral method previously used to determine static stress intensity factors is applied to dynamic crack problems. The required derivatives of the traction in the reference problem are obtained numerically by the displacement discontinuity method. Stress intensity factors are determined by an integral around a contour which contains a crack tip. If the contour is chosen as the outer boundary of the body, the stress intensity factor is obtained from the boundary values of traction and displacement. The advantage of this path-independent integral is that it yields directly both the opening-mode and sliding-mode stress intensity factors for a straight crack. For dynamic problems, Laplace transforms are used and the dynamic stress intensity factors in the time domain are determined by Durbin's inversion method. An indirect boundary element method, incorporating both displacement discontinuity and fictitious load techniques, is used to determine the boundary or contour values of traction and displacement numerically.  相似文献   

11.
Abstract

The dynamic behavior of an arc-shaped interfacial crack in an orthotropic functionally graded annular bi-material structure is investigated. In order for the analysis to be executable, the material properties are assumed to vary with the power function of the radial coordinates. By applying the separation variable method, the boundary value problem of the partial differential equation describing the fracture problem of this article can be transformed into a Cauchy kernel singular integral equation with the unknown jump of displacements across the crack surfaces. The obtained integral equation is solved numerically by Lobatto–Chebyshev collocation method to show the effects of the geometric and physical parameters upon the dynamic stress field near the crack tips.

Communicated by Kuang-Hua Chang.  相似文献   

12.
求解了在材料的特征方程有重根时,三维压电弹性体的单位集中不连续位移和不连续电势基本解。讨论了重根对断裂力学问题解的影响。  相似文献   

13.
Y. C. Angel 《Wave Motion》1994,20(4):371-383
The reflection and transmission of antiplane surface waves (Love waves) by a surface-breaking crack in a layered elastic solid is investigated. The crack is normal to the free surface, and breaks into the lower half-space solid. The formulation of the problem is reduced to a singular integral equation of the Cauchy type. In this equation, the unknown function, which is the slope of the crack-face displacement, is discontinuous at the interface between the two solids. It is shown that the magnitude of the discontinuity is related to the ratio of the shear moduli. A Gaussian numerical method is used to obtain the solution of the singular integral equation. At some distance from the plane of the crack, the wave motion is the superposition of a finite number of Love-wave modes. The amplitudes of these modes are readily evaluated in terms of the slope of the crack-face displacement. Curves are presented for the reflection coefficients corresponding to the first three modes and for the transmission coefficient as functions of the dimensionless frequency.  相似文献   

14.
The problem of an orthotropic strip containing two collinear cracks normal to the strip boundaries is considered. The Fourier series method is used to reduce the associated boundary value problem to triple series equations, then to a singular integral equation, which can be solved analytically. Under remote uniform antiplane shear loading, the stress field and the crack sliding displacement are determined analytically and stress intensity factors are also given in a closed form.  相似文献   

15.
A mechanical model was established for the antiplane dynamic fracture problem of a functionally graded coating–substrate structure with a coating crack perpendicular to the weak-discontinuous interface. The problem was reduced to a Cauchy singular integral equation by the methods of Laplace and Fourier integral transforms. Erdogan’s collocation method and the Laplace numerical inversion proposed by Miller and Guy were used to calculate the dynamic stress intensity factors. Three conclusions were drawn through parametric studies: (a) unlike the conclusion drawn for an interfacial crack, reducing the weak discontinuity of the interface will not necessarily decrease the dynamic stress intensity factor (DSIF) of the coating crack perpendicular to the interface; (b) increasing the stiffness of the substrate when that of the coating is fixed, or decreasing the stiffness of coating when that of the substrate is fixed, will be beneficial for the reduction of the DSIF of a coating crack perpendicular to the interface; and (c) the free surface has a greater influence on the DSIF than the interface does, and the effect of the interface on the DSIF is greater than that of the material stiffness in the crack-tip region.  相似文献   

16.
黏弹性体界面裂纹的冲击响应   总被引:3,自引:0,他引:3  
研究两半无限大黏弹性体界面Griffith裂纹在反平面剪切突出载荷下,裂纹尖端动应力强度因子的时间响应,首先,运用积分变换方法将黏弹性混合黑社会问题化成变换域上的对偶积分方程,通过引入裂纹位错密度函数进一步化成Cauchy型奇异积分方程,运用分片连续函数法数值求解奇异积分方程,得到变换域内的动应力强度因子,再用Laplace积分变换数值反演方法,将变换域的解反演到时间域内,最终求得动应力强度因子的时间响应,并对黏弹性参数的影响进行分析。  相似文献   

17.
This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.  相似文献   

18.
This paper investigates the edge crack problem for a coating/substrate system with a functionally graded interfacial zone under the condition of antiplane deformation. With the interfacial zone being modeled by a nonhomogeneous interlayer having the continuously varying shear modulus between the dissimilar, homogeneous phases of the coated medium, the coating is assumed to contain an edge crack at an arbitrary angle to the interfacial zone. The Fourier integral transform method is used in conjunction with the coordinate transformations of basic field variables. Formulation of the proposed crack problem is then reduced to solving a singular integral equation with a generalized Cauchy kernel. The mode III stress intensity factors are defined and evaluated in terms of the solution to the integral equation. In the numerical results, the values of the stress intensity factors are plotted, illustrating the effects of the crack orientation angle for various material and geometric combinations of the coating/substrate system with the graded interfacial zone.  相似文献   

19.
A large elastic solid containing an infinite sequence of slitlike relaxed cracks with a constant distance of vertical separation is considered. The solid is deforming under plane strain shear conditions (mode II). The plastic relaxation around each of the cracks is represented by a suitable distribution of edge dislocations coplanar with the crack itself, the distribution being determined from a singular integral equation. This equation is solved numerically using an expansion of the non-singular part of the kernel in a series of Chebyshev polynomials. Solutions are obtained for the extent of spread of plasticity from each crack and for the associated dislocation distribution as a function of the crack spacing and the applied load. The results are applied to a brief discussion of the fracture process at stress concentrations using the crack opening displacement criterion.  相似文献   

20.
The formulation for thermal stress and electric displacement in an infinite thermopiezoelectric plate with an interface and multiple cracks is presented. Using Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity defined on each crack face is developed and solved numerically. The formulation can then be used to calculate some fracture parameters such as the stress–electric displacement and strain energy density factor. The direction of crack growth for many cracks in thermopiezoelectric bimaterials is predicted by way of the strain energy density theory. Numerical results for stress–electric displacement factors and crack growth direction at a particular crack tip in two crack system of bimaterials are presented to illustrate the application of the proposed formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号