首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
强流束晕-混沌的外部磁场开关控制   总被引:7,自引:1,他引:6       下载免费PDF全文
高远  罗晓曙  翁甲强 《物理学报》2004,53(12):4131-4137
研究了强流离子束在周期聚焦磁场通道中束晕-混沌的外部磁场开关参数控制方法. 将该方法应用在多粒子模型中,实现了对5种不同初始分布质子束的束晕-混沌的有效控制,得到了消除束晕及其再生现象的理想结果.在强流加速器系统中,由于外部磁场是可测和可调 的物理量,因此该控制方法有利于实验研究,可为强流质子加速器中周期聚焦磁场的设计和实验提供参考. 关键词: 强流离子束 周期聚焦磁场通道 束晕_混沌 混沌控制 开 关控制  相似文献   

2.
兰州重离子研究装置(HIRFL)是由离子源,注入器(扇聚焦回旋加速器,SFC)和主加速器(分离扇回旋加速器,SSC)组成的。由离子源产生的束流经过注入器SFC的预加速后,通过前束流线注入到主加速器SSC,束流在主加速器加速到最大能量后,由后束流线送到各个实验终端。本文首先介绍了HIRFL的建造过程、束流特性和主要结构。然后描述了SSC和束流线的调束过程、调束方法及运行状态。最后展望了HIRFL广泛的应用前景。  相似文献   

3.
为满足中国原子能科学研究院最新研制的400 kV小型重核素加速器质谱(AMS)装置的自动控制的需求,设计并实现了针对该装置的自动控制系统。从硬件和软件两个方面描述了系统结构。虚拟仪器LabWindows/CVI9.0、PLC、数据库、组态软件等的相结合,既组建了友好的人机交互界面,又提高了系统的可靠性。自主设计的具有较高自动化水平的气体剥离器控制,实现了同步监测、控制气体流量和真空度。自动换靶控制的零位指示和靶号显示相配合,更精确地实现换靶功能,提高了装置自动化程度。经长时间测试,该测控系统满足了加速器质谱系统的自动控制及就地操作需求。  相似文献   

4.
为了研究HL-2M装置中性束注入(NBI)加热用的80kV/45A/5s热阴极离子源束光学特性,采用红外电荷耦合元件(CCD)成像技术,测量离子源引出粒子束轰击量热靶板产生的温度分布,得到束功率密度空间分布区间特征参数1/e半宽度。在NBI热阴极离子源调试平台上,扫描离子源的放电和引出参数,利用CCD红外热像仪获得了对应参数下量热靶上的束功率密度分布。实验结果表明,HL-2M装置NBI加热系统80kV/45A离子源可用的导流系数范围为0.7~1.5μP。同样导流系数下,梯度电极与等离子体电极的分压比较高时,引出束流的半宽度较小。  相似文献   

5.
离子源是强流质子回旋加速器的核心设备之一, 它的性能指标对最终束流大小和质量都有重大影响. 文章介绍了一种运用于强流质子回旋加速器上的多峰场负氢离子源的设计与加工情况, 该离子源主要是通过深入研究高密度等离子体产生技术、长寿命大直流灯丝电子发射技术、磁约束技术、虚拟过虑技术、残留气体与电子剥离的控制技术, 以及离子引出技术等, 在中国原子能科学研究院原有10mA离子源基础上建立负氢离子源, 实验研究低能、强流束的实验匹配与调试技术, 将平均引出束流提高到15—20mA.  相似文献   

6.
离子源是强流质子回旋加速器的核心设备之一,它的性能指标对最终束流大小和质量都有重大影响.文章介绍了一种运用于强流质子回旋加速器上的多峰场负氢离子源的设计与加工情况,该离子源主要是通过深入研究高密度等离子体产生技术、长寿命大直流灯丝电子发射技术、磁约束技术、虚拟过虑技术、残留气体与电子剥离的控制技术,以及离子引出技术等,在中国原子能科学研究院原有10mA离子源基础上建立负氢离子源,实验研究低能、强流束的实验匹配与调试技术,将平均引出柬流提高到15-20mA.  相似文献   

7.
为了研究HL-2M装置中性束注入(NBI)加热用的80k V/45A/5s热阴极离子源束光学特性,采用红外电荷耦合元件(CCD)成像技术,测量离子源引出粒子束轰击量热靶板产生的温度分布,得到束功率密度空间分布区间特征参数1/e半宽度。在NBI热阴极离子源调试平台上,扫描离子源的放电和引出参数,利用CCD红外热像仪获得了对应参数下量热靶上的束功率密度分布。实验结果表明,HL-2M装置NBI加热系统80k V/45A离子源可用的导流系数范围为0.7~1.5?P。同样导流系数下,梯度电极与等离子体电极的分压比较高时,引出束流的半宽度较小。  相似文献   

8.
武威和兰州重离子加速器使用回旋加速器作为其注入器。回旋加速器为该装置的同步加速器提供10μA的碳离子束流以满足其物理需求。而径向探针则是安装在回旋加速器内部实现束流流强和圈图测量的重要束诊元件。径向靶头上的束流信息经前端电子学拾取后会进一步进入数据采集系统,最终实现回旋加速器的束流流强和圈图测试。其中,径向探针的前端电子学采用皮安表,数据采集系统基于实时操作系统和FPGA技术。介绍了径向探针的机械结构设计,并分析了探头有无水冷结构的热结构;描述了控制系统软硬件架构,可以实现10 kHz的数据和位置信息的同步采集。最后,还介绍了探针机械和控制系统的实验室测试和验收标准以及在束测量结果。  相似文献   

9.
不锈钢管道低温溅射镀TiN薄膜技术   总被引:1,自引:0,他引:1       下载免费PDF全文
 设计了一套适用于加速器细长管道真空室的低温溅射镀TiN薄膜装置。利用该装置,对86 mm×2 000 mm的不锈钢管道真空室进行溅射镀TiN膜实验,并对镀膜实验结果进行分析,得到了适用于加速器管道真空室内壁溅射镀TiN膜的表面处理参数。样品测试结果表明:在压强为80~90 Pa、基体温度为160~180 ℃的镀膜参数下,不锈钢管道内壁获得的TiN薄膜最佳,薄膜沉积速率为0.145 nm/s。镀膜后真空室的二次电子产额明显降低。  相似文献   

10.
强流束晕-混沌的外部磁场自适应控制   总被引:5,自引:1,他引:4       下载免费PDF全文
 研究了强流质子束在周期聚焦磁场通道中束晕 混沌的外部磁场自适应控制方法,给出了磁场控制方程。将该方法应用在多粒子模型中,实现了对4种不同初始分布质子束的束晕 混沌的有效控制,得到了消除束晕及其再生现象的理想结果。在强流加速器系统中,由于外部磁场是可测和可调的物理量,因此该控制方法有利于实验研究,可为强流质子加速器中周期聚焦磁场的设计和实验提供参考。  相似文献   

11.
Duoplasmatrons have been employed at GSI as accelerator sources of multiply charged heavy ions, but extensive experience was collected also with singly charged noble gas ions. Other ion species can be produced from volatile compounds. provided that the cathode is protected from aggressive vapours by an additional noble gas. In a second source modification. the sputter duoplasmatron, ions are directly obtained from solid material.

Recently the GSI-duoplasmatron has been equipped with plasma expansion cups in order to raise the ion current output. Generally, at least a factor of three is gained in beam intensity and other aspects of source performance are improved, too.

A new cathode design considerably enhances life-time and reliability, permitting uninterrupted operation for a few hundred hours. Tables of measured ion beam currents are given.  相似文献   

12.
The beam optics of a multi-sample sputter ion source, based on the NEC MCSNICS, has been modified to accommodate cathode voltages higher than 5 kV and dispenses with the nominal extractor. The cathode voltage in Cs sputter sources plays the role of the classical extractor accomplishing the acceleration of beam particles from eV to keV energy, minimizing space charge effects and interactions between the beam and residual gas. The higher the cathode voltage, the smaller are these contributions to the emittance growth. The higher cathode voltage also raises the Child’s law limit on the Cs current resulting in substantially increased output. The incidental focusing role of the extractor is reallocated to a deceleration Einzel lens and the velocity change needed to match to the pre-acceleration tube goes to a new electrode at the tube entrance. All electrodes are large enough to ensure that the beam fills less than 30% of the aperture to minimize aberrations. The improvements are applicable to sputter sources generally.  相似文献   

13.
北京大学1.7 MV串列静电加速器运行至今已有三十多年。该加速器配备有高频电荷交换负离子源和铯溅射负离子源,能够引出从H到 Au之间 的大部分元素的离子。离子能量可被加速至几百keV到若干MeV,主要开展离子注入/辐照实验和卢瑟福背散射(RBS)和沟道分析等离子束分析工作。基于辐照实验需求,建立了高温辐照系统,温度最高可达950 ℃。为了实现更加精确的离子注入,设计了直接式与间接式两种法拉第杯结构,使束流扫描面积精确控制,并且在测量束流强度时除了抑制次级电子,还考虑到了次级正离子的影响。利用不同能量的Au离子在单晶Si片上进行了注入实验,通过RBS分析显示测量剂量与期望剂量误差在4%以内,此外,注入均匀性的测试表明注入剂量的相对标准偏差为2%。  相似文献   

14.
F Osswald  R Rebmeister 《Pramana》2002,59(5):795-804
A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and the anode/cathode voltage. The paper reports the results carried out by experimentation on a test facility and on the injector itself as well as the investigations performed with computer simulations.  相似文献   

15.
JUNA团队计划利用CJPL所提供的极低本底条件和400 kV高压平台上2.45 GHz ECR离子源产生的毫安量级束流首次在天体物理能区对关键核反应进行直接测量。实验需要10 emA的质子束流和He+束流以及2 emA的He2+束流。使用2.45 GHz离子源产生毫安量级的He2+束流是离子源制造的难点。由于离子源分析磁铁分辨能力有限,无法区分He2+和H+2离子,本文首次使用核反应法对离子源产生的A/q=2的束流进行了鉴别,结果显示,JUNA项目2.45 GHz ECR离子源无法产生毫安量级的He2+束流。该研究成果为JUNA项目离子源的设计提供了重要的参考依据。JUNA团队另外研制了一台微波频率为14.5 GHz的ECR离子源并成功产生2 emA的He2+束流来满足实验需求。  相似文献   

16.
A radial sputter probe has been developed for the AECR-U as an additional method of producing metal ion beams.Negative voltage is applied to the probe to incite collisions with target atoms,thereby sputtering material into the plasma.The sputter probe is positioned through one of the 6 radial access slots between the permanent hexapole structure of the AECR-U.The probe position can be varied with respect to the inner edge of the hexapole magnet structure.Charge state distributions and peak beam intensities at bias voltages up to-5kV were obtained for gold samples at varying distances of the probe with respect to the plasma.For high charge states production the radial position with respect to the plasma was more sensitive than for the medium and lower charge states.For high charge state ion production the probe was optimized at a distance of 0.6cm inside the chamber wall(4.1cm from the center of the chamber).Stable beams with peak intensities of up to 28eμA of Au~(24 ) and 1.42eμA of Au~(41 ) have been produced using the sputter probe technique. In addition,a solid state circuit under development by Scientific Solutions,Inc which provides a bandwidth up to 100MHz was used to drive the 14GHz klystron amplifier for the LBNL AECR-U ion source.Various broadband and discrete heating modes were tested and the results for high charge state ion production were compared with single frequency heating.  相似文献   

17.
A high resolution injector system has recently been installed at the Lund 3 MV tandem Pelletron accelerator. The new injector, designed mainly for 26Al ions, will increase the experimental potential of the Lund AMS facility considerably. High quality energy- and mass-resolution is obtained by using a 90° spherical electrostatic analyzer followed by a 90° magnetic analyzer. The injector is equipped with a high intensity sputtering source with a spherical ionizer. A new analytical technique for acceptance calculations as well as PC-based computational methods have been used in the design of the ion optical system of the new injector. Compared to our old injector system which has a magnetic analyzer with a bending angle of only 15°, the new system has a more than ten times better resolution. The beam optics of the new system is also better designed to match the accelerator acceptance. In this way the ion transmission from the ion source to the detector, for different ions of interest in our AMS programme, has been increased.  相似文献   

18.
The possibility of increasing the ion beam current in an undulator linear accelerator (UNDULAC) is studied. Such an accelerator can be implemented in an H-type periodic resonator in a structure that has no RF-field harmonic synchronous with the beam. It has been shown before that the UNDULAC’s beam current can be increased with the use of ribbon beams. Another method of increasing intensity of ion beams is associated with the possibility of accelerating the positive and negative ions simultaneously in the same bunch. Numerical simulations are used to find the maximum intensity of this two-component beam.  相似文献   

19.
A new method for the production of beams of negative ions to be injected into a tandem Van de Graaff accelerator is presented. Negative ions of a desired species are produced by impact of noble gas ions with molecules of a gas containing this element, and are then collected and bent into a beam with high efficiency. For example, a beam of negative fluorine ions has been obtained by bombardment of boron fluoride with 30 keV krypton ions, resulting in a current of 0·5 μA of F++++ at the target. The original ion source of the tandem has been used with this modified procedure. The krypton gas has been fed into the duoplasmatron and the boron fluoride into the charge exchange channel. No damage to the ion source system has been observed, even in this case. This method has also been applied to nitrogen and oxygen with good results. Some measurements are reported, and a brief discussion of the basic process of the method is given.  相似文献   

20.
At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for fission fragments) is under design. In the high neutron flux of 1014 n/cm2 s up to 1014 neutron-rich fission fragments per second are produced in the 1 g U-235 target. Ions with an energy of 30 keV are extracted from the ion source. In the mass separator two isotopes can be selected. One of the beams is used for low energy experiments, the other one is injected into an ECRIS (or EBIS) for charge breeding to a q/A≥0.16. A gas filled RFQ cooler is used for emittance improvement. The subsequent LINAC delivers beams with an energy ranging from 3.7 MeV/u to 5.9 MeV/u. New IH structures are being developed at the Munich tandem laboratory. A small storage ring is planned in a further stage to recycle the fission fragments. A thin target foil can be placed into this ring, e.g., for synthesis of super-heavy elements. The through-going beam tube has been installed in the heavy water tank of the reactor. Tests of the target ion source in a special oven to test long term stability and safety tests were in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号