首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
硝基甲烷异构化反应势能面的ab initio研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在B3LYP/ 6 311++G(2d ,2p)水平上 ,优化得到硝基甲烷CH3 NO2 的 10种异构体和 2 3个异构化反应过渡态 ,并用G2MP2方法进行了单点能计算 .根据计算得到的G2MP2相对能量 ,探讨了CH3 NO2 势能面上异构化反应的微观机理 .研究表明 ,反应初始阶段的CH3 NO2 异构化过程具有较高的能垒 ,其中CH3 NO2 的两个主要异构化反应通道 ,即CH3 NO2 →CH3 ONO和CH3 NO2 →CH2 N(O)OH的活化能分别为 2 70 .3和 2 6 7.8kJ/mol,均高于CH3 NO2的C -N键离解能 .因而 ,从动力学角度考虑 ,CH3 NO2 的异构化反应较为不利 .  相似文献   

2.
用量化从头算方法在MP4(SDTQ)理论水平上首次考察了甲醛和氢氧根负离子反应的所有可能的反应通道.用6-311 G(3df,3pd)基组对所有的反应中间体、过渡态和产物开展了结构优化和单点能量计算,并经频率分析和内禀反应反应坐标计算(IRC)确认反应物、中间体、过渡态和产物的相关性.在H2CO OH-所有可能的反应通道中生成CHOO- H2的通道是该反应的最可几通道,而由于羰基的存在生成H3O-的通道更容易分解产生CHOO- H2.在高计算水平下计算的氢交换反应结果与文献报道相同.通过计算提出亲核加成过程的反应通道,主要产物生成H2和生成COOH-/HCOO-/OCHO-异构体.所有反应通道的反应几率顺序为COOH- H2>H3O- CO>HCHO OH->CHO- H2O>HCOO- H2>OCHO- H2.  相似文献   

3.
采用AM 1方法理论研究了C70 五元环酸酐衍生物C72 O3 的 8种可能异构体的结构和稳定性 ;以各异构体稳定构型为基础 ,分别用AM 1和ZINDO/CI方法计算了它们的振动光谱和电子光谱。结果表明 ,酸酐基团—C2 O3 主要加成在CⅠ CⅡ(异构体A)和CⅢ CⅢ(异构体B)键上形成闭环结构 ,异构体B的稳定性与实验已证实存在的异构体A十分相近 ;异构体A的振动光谱理论计算值与实验值符合较好 ,B的振动光谱理论计算值与A相似 ;对C72 O3 各异构体的电子跃迁进行了理论指认 ,讨论了其电子光谱的红移现象 ;其他异构体的振动和电子光谱属于理论预测。  相似文献   

4.
采用从头算CCSD(T)/6-311 G(2d,2p)//B3LYP/6-311G(d,p)方法,研究了自由基-分子反应F CH2CHCH3的各种不同的反应通道.该反应主要是通过复合物形成机制进行,即F分别加到碳碳双键的两端形成自由基复合物1和2.这两种亚稳态自由基会解离成三种产物:H C3H5F、CH3 C2H3F和HF C3H5.理论计算结果表明,生成CH3 C2H3F是反应的主要通道,而生成H C3H5F和HF C3H5对产物也有一定的贡献.这一结果和实验符合得很好.  相似文献   

5.
利用abinitio方法对CH3CH2+N(4S)反应进行了理论研究,在MP2/6-311+G(d,p)水平上优化得到了反应途径上的反应物、中间体、过渡态和产物的几何构型和谐振频率,并在QCISD(T)/6-311+G(d,p)水平上进行单点能计算.计算结果表明,CH2CH2+3NH和H2CN+CH3是此反应主要产物,CH3CHN+H是此反应次要产物.产物CH2CH2+3NH主要来自直接氢抽提反应通道,H2CN+CH3来自加成-解离反应通道,CH3CHN+H来自加成-解离反应通道.  相似文献   

6.
C78O异构体的电子结构和光谱   总被引:1,自引:0,他引:1  
为了模拟C78单加成物的加成位置和稳定性,并预测其光谱性质,用INDO系列方法对基于C2v-C78之上的C78O所有可能的34个异构体结构和电子光谱进行理论研究.结果表明,C78O的最稳定异构体是O加在位于C2v-C78短轴上的73,78-键上且形成环氧结构的6/6异构体,O的原子轨道对73,78-C78O中的HOMO能量降低起重要作用.讨论了电子跃迁性质和73,78-C78O电子光谱的长波吸收峰与母体相比发生蓝移的原因.  相似文献   

7.
应用密度泛函理论对 ClF3 O 和环氧丙烷的反应机理进行了研究。在 B3PW91/6-31++G(d ,p )水平上优化了各驻点(反应物、中间体、过渡态和产物)的几何构型,并计算了它们的振动频率和零点振动能。采用 CCSD(T)/6-31++G(d ,p )//B3PW91/6-3l++G(d ,p )单点能计算方法求得各物质的能量,并做零点能校正。计算结果表明,ClF3 O 与 C3 H 6 O 可经过不同的反应路径,引发 C3 H 5 O 自由基和 ClOF2自由基生成环氧丙醇和三氟化氯,其中,位于 ClF3 O 周向位置的 F 原子与 C3 H 6 O 的 C(7)上与 CH 3异侧的 H(9)原子结合的活化能最低,仅15.63 kJ/mo1;ClF3 O 与 C3 H 6 O 反应生成的 C3 H 5 O 自由基和 ClOF2自由基继续反应,经过不同反应路径生成 C3 H 4 O、ClOF 和 HF,其中,ClOF2中的 F 原子和 C3 H 5 O 中的 H(2)或 H(4)原子结合是无能垒的过程。整个反应的主要路径为 C3 H 6 O+ClF3→O→TS12 P4(C3 H 5 O+HF+ClOF2→) P12(CH 2 CHCHO+2 HF+ClOF)。  相似文献   

8.
在QCISD(T)/6-311+G*//B3LYP/6-311+G*水平上详细地研究了N-甲硝胺(CH3NHNO2)异构化和分解反应的势能面, 探讨了其反应的可能机理. 计算结果表明, 四个最低能量的反应通道是:(i) N-NO2键断裂通道,(ii) CH3NHNO2先异构化为CH3NN(OH)O(IS2a), 然后IS2a异构化为其它异构体,(iii) HONO消除通道,(iv) CH3NHNO2先异构化为CH3NHONO(IS3), 然后IS3通过N-ONO或O-NO键断裂而分解. 用CTST理论计算了这些反应的最初反应步(决速步)的反应速率常数, 得到这些决速步在298-2000 K的阿仑尼乌斯公式为k6(T)=1014:8e-46:0=RT ,k7(T)=1013:7e-42:1=RT ,k8(T)=1013:6e-51:8=RT 和k9(T)=1015:6e-54:3=RT s-1. 在503-543 K时计算的总包反应速率常数和实验测得的速率常数吻合很好.通过分析这些反应的速率常数, 发现在低温下CH3NHNO2异构化为CH3NN(OH)O的反应是主要通道, 而在高温下N-NO2键断裂和CH3NHNO2异构化为CH3NHONO的通道与异构化为CH3NN(OH)O的反应通道竞争.  相似文献   

9.
用半经验AM1和INDO/CIS方法及密度泛函方法在C2v-C78基础上研究了C78O5可能异构体的平衡构型和光谱性质.C78O5的最稳定异构体是具有一个轮烯和四个环氧结构的异构体28,29,30,31,52,53,70,71,73,78-C78O5(A).C78O5异构体电子光谱与C2v-C78相比将发生蓝移,并讨论了蓝移的原因,并对电子跃迁进行指认.基于B3LYP/6-31G优化构型,用AM1和B3LYP/6-31G方法探讨了C78O5的IR和NMR谱.  相似文献   

10.
利用abinitio方法对CH3CH2+O(3P)反应进行了理论研究,在MP2/6311+G(d,p)水平上优化得到了反应途径上的反应物、中间体、过渡态和产物的几何构型和谐振频率,并在QCISD(T)/6311+G(d,p)水平上进行单点能计算.计算结果表明:CH2O+CH3、CH3CHO+H和CH2CH2+OH是主要反应产物,其中CH2O+CH3主要来自反应通道A1:(R)→IM1→TS3→(A),CH3CHO+H主要来自反应通道B1:(R)→IM1→TS4→(B),CH2CH2+OH主要来自直接抽提反应通道C1和C2:(R)→TS1(TS2)→(C).计算结果同时表明该反应生成CO的通道能垒是非常高的,CO应该不是主要产物.  相似文献   

11.
用时间分辨傅立叶红外光谱法和量子化学计算,研究了CH3自由基与NO2的基元反应.由248 nm激光光解CH3Br或CH3I得到CH3自由基.首次观测到了振动激发的产物OH、HNO和CO2.另一产物NO也被证实.由此确定了反应通道CH3O+NO,CH2NO+OH 和HNO+H2CO.其中CH3O+NO是主要的反应通道.还用CCSD(T)/6-311++G(df,p)//MP2/6-311G(d,p)的方法对上述通道的机理在理论上做了研究.理论计算的结果与实验观察相符.  相似文献   

12.
应用密度泛函理论对ClF3O和环氧丙烷的反应机理进行了研究。在B3PW91/6-31++G(d,p)水平上优化了各驻点(反应物、中间体、过渡态和产物)的几何构型,并计算了它们的振动频率和零点振动能。采用CCSD(T)/6-31++G(d,p)//B3PW91/6-3l++G(d,p)单点能计算方法求得各物质的能量,并做零点能校正。计算结果表明,ClF3O与C3H6O可经过不同的反应路径,引发C3H5O自由基和ClOF2自由基生成环氧丙醇和三氟化氯,其中,位于ClF3O周向位置的F原子与C3H6O的C(7)上与CH3异侧的H(9)原子结合的活化能最低,仅15.63kJ/mo1;ClF3O与C3H6O反应生成的C3H5O自由基和ClOF2自由基继续反应,经过不同反应路径生成C3H4O、ClOF和HF,其中,ClOF2中的F原子和C3H5O中的H(2)或H(4)原子结合是无能垒的过程。整个反应的主要路径为C3H6O+ClF3O→TS12→P4(C3H5O+HF+ClOF2)→P12(CH2CHCHO+2HF+ClOF)。  相似文献   

13.
用密度泛函理论(DFT)中的B3LYP方法,采取6-31+G**基组对2-氨基-5巯基-1,3,4-噻二唑(简称AMT)的异构化反应机理进行了量子化学研究,全参数优化了异构化过程中反应物、产物的几何构型,找出了异构化途径中的过渡态,并通过振动分析加以确认,同时进行零点能校正.研究结果表明,异构化过程存在六种不同的异构化通道,有六个过渡态,相对而言,A→C之间的异构化反应最易发生,C是最稳定的异构化产物.  相似文献   

14.
用B3LYP/6 31+G(d)和MP2 (Full) /6 31+G(d)优化ClONO2 及其分解反应和异构化反应的过渡态和产物的分子结构 .在B3LYP/6 31+G(d)水平上计算了相关分子的振动频率 .ClONO2 的几何结构、振动频率和红外强度与实验测量值符合得很好 .找到了未曾报道的立体异构体 .对这一立体异构体进行了高级别理论方法CCSD(T) /6 311G(d)和QCISD(T) /6 311G(d)的几何结构优化和振动频率计算 ,表明它是一个稳定的立体异构体 .在所研究的几种反应中 ,ClONO2 分解为NO2 +ClO是最容易进行的反应 .而ClONO2 异构为立体异构体的反应是最难进行的反应 .其所需克服的过渡态的能垒为 4 81.5 2kJ/mol,而反应吸收能量为 2 99.85kJ/mol.次难进行的是ClONO2 经TS1到反应中间体M1,再经TS12而分解为ClNO +O2 的反应 .这个反应通道所需克服过渡态的能垒为 4 2 1.5 5kJ/mol,反应吸收能量为 15 7.98kJ/mol.从以上分析可知 ,和ClO +NO2 反应生成ClONO2 比较 ,ClONO2 具有较好的稳定性 .  相似文献   

15.
采用G3MP2B3方法研究了氧负离子与乙腈反应的势能剖面.在(U)B3LYP/6-31+G(d,p)理论水平下分别优化了该反应势能面上反应物、产物、中间体和过渡态的分子结构,采用G3MP2B3方法校正了这些关键点的能量. 势能面上的各个反应路径均通过针对过渡态的內禀反应坐标理论计算加以确定. 分别考察了四个可能的热力学产物通道,即质子转移、氢原子转移、H2+转移和双分子亲核取代反应途径. 其中,经H2+转移生成H2O的反应通道为该反应的主要产物通道.  相似文献   

16.
采用密度泛函理论B3LYP方法研究Mg(NH2)2与LiH放氢反应机理,在6-311G(d,p)基组水平上对反应物、中间体、过渡态及产物进行全几何参数优化,频率分析和内禀反应坐标(IRC)计算证实中间体和过渡态的正确性和相互连接关系.计算结果表明,反应分三个阶段,包括第一步氢取代反应,第二步氢取代反应和脱氢后的异构化反应.反应有两条途径,其中第二步对位氢取代反应所对应通道为主反应通道.反应释放的H2中两个氢原子分别来源于Mg(NH2)2和LiH.  相似文献   

17.
使用Gaussian98程序包,在B3LYP/6-311++G**基组水平上对CH3CF2O2+HOO的各反应通道进行了充分研究,过渡态和产物间的联系通过IRC确认.用振动模式分析和电子布居分析对所有反应通道进行了讨论以阐明反应机理.研究结果表明,在能量上CH3CF2CO2+HOO→IM1→TS1→CH3CF2O2H+O2通道最为有利,CH3CF2O2H和O2是主要产物,但CH3OH和CF2O的生成也是可能的.  相似文献   

18.
用密度泛函理论在B3LYP/6.311++g(d,P)基组水平上对A12O3X2(X=H,D,T)分子的可能较低能量构型进行了几何优化.结果表明该分子的基态电子态和对称性为A12O3X2(X=H,D,T)(1A’)G,计算了氢同位素分子及A12O3X2(X=H,D,T)的电子能量E、定容热容Cv和熵S.用电子振动近似方法计算了固体A12O3的氢化热力学函数△H0,△S0,△G0,以及平衡压力与温度的关系.当A1203吸附氢(氘,氚)形成固体时,反应的氢氘氚排代效应的顺序为氚排代氘,氘排代氢,与钛等金属与氢及其同位素反应的氢氘氚排代效应的顺序相反.总体来说,这种排代效应都非常弱.随着温度的增加,这系列反应的氢氘氚排代效应趋于消失.  相似文献   

19.
用密度泛函理论在B3LYP/6-31G(d,p)计算水平下研究了次氯酸钠氧化邻硝基苯胺生成苯并氧化呋咱的环氧化反应.考虑溶剂化效应对反应的影响,使用极化连续反应场模型进行几何优化.计算了该反应的两种可能反应通道,它们都是分步反应,反应通道A经历氧化、移氢、脱水和环化四步反应,在反应通道B中,氢氧化钠的OH-首先进攻邻硝基苯胺的胺基H原子,生成邻硝基苯亚胺负离子.计算结果表明,在反应通道A是可行的反应通道,1个水分子辅助进行分子内脱水反应是速控步骤.  相似文献   

20.
氧原子和甲基自由基反应机理的理论研究   总被引:1,自引:0,他引:1  
用分子轨道从头算和密度泛函理论(DFT)中的B3LYP方法以及适中基组6-311+G(2df,2p)对氧原子与甲基CH3反应进行了系统的研究。计算给出了通道上各斑点物种的构型参数、振动频率和能量。结果表明:CH2OH比CH3O稳定,能量约低26.63kJ/mol,且生成氢和甲醛为其最主要反应通道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号