首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density of varepsilon-iron has been calculated at pressures and temperatures up to 300 GPa and 1300 K, respectively. We observe varepsilon to beta phase transition at pressures between 135 and 300 GPa and temperature above 1350 K; the pattern can be interpreted in terms of double hexagonal close-packed structure. The density calculated at high pressure and temperature (330-360 GPa and 5000-7000 K) closely matches with preliminary reference Earth model density, thereby imposing constraint on the composition of the Earth's inner core.  相似文献   

2.
3.
The peculiarities of defect formation in n- and p-type conductivity HgCdTe and PbSnTe crystals after electron irradiation (2 MeV, 300 K) up to 2 × 1018 cm-2 are examined. It has been found that irradiation results in formation of n-type conductivity crystals with final parameters that are determined by the composition of initial samples. The annealing of radiation defects occurs in the 360–470 K temperature range. It has been believed that the change of HgCdTe, PbSnTe properties after electron irradiation at 300 K are connected with formation of radiation defects, including Te vacancies.  相似文献   

4.
The impacts of remote Coulomb scattering(RCS)on hole mobility in ultra-thin body silicon-on-insulator(UTB SOI)p-MOSFETs at cryogenic temperatures are investigated.The physical models including phonon scattering,surface roughness scattering,and remote Coulomb scatterings are considered,and the results are verified by the experimental results at different temperatures for both bulk(from 300 K to 30 K)and UTB SOI(300 K and 25 K)p-MOSFETs.The impacts of the interfacial trap charges at both front and bottom interfaces on the hole mobility are mainly evaluated for the UTB SOI p-MOSFETs at liquid helium temperature(4.2 K).The results reveal that as the temperature decreases,the RCS due to the interfacial trap charges plays an important role in the hole mobility.  相似文献   

5.
Physics of the Solid State - The dynamics and temperature dependences of the mobility of domain walls in EuFeO3 (from 4.2 to 300 K), TmFeO3 (from 100 to 300 K), LuFeO3 (300 K), YFeO3 (460 K), and...  相似文献   

6.
Unreconstructed interfaces may be prepared by evaporation of thick Pb films onto surfaces at room temperature. Current-voltage and capacitance-voltage characteristics of such Schottky contacts were measured in the temperature range between 140 and 300 K. The experimental data are analyzed by applying the thermionic-emission theory of inhomogeneous metal-semiconductor contacts as well as the “standard” thermionic-emission theory. From both methods the Schottky barrier height of laterally homogeneous contacts results as 0.724 eV. This value is by 74 meV larger than the previously observed barrier heights of laterally homogeneous interfaces. Similar differences were reported for unreconstructed and reconstructed Al- and contacts. The reduced barrier heights of all these interfaces are explained by the electric dipole associated with the stacking faults of reconstructions at surfaces and interfaces. Received: 14 May 1998 /Revised and Accepted: 7 September 1998  相似文献   

7.
This paper presents results of new far-infrared and middle-infrared measurements (wavenumber range of 4000?C100 cm?1) of the CoFe2O4 ceramic in the temperature range from 300 K to 8 K. The band positions and their shapes remain constant across the wide temperature range. The quality of the sample was investigated by X-ray, EDS and EPMA studies. The CoFe2O4 retains the cubic structure (Fd - 3m) across the temperature range from 85 K to 360 K without any traces of distortion. Based on current knowledge the polycrystalline CoFe2O4 does not exhibit any phase transitions across the temperature range from 8 K to 300 K.  相似文献   

8.
Polydimethylsiloxane (PDMS)/fumed silica A-300 and PDMS/ZrO2/A-300 were studied using adsorption, thermogravimetry, temperature-programmed desorption (TPD) mass-spectrometry, infrared spectroscopy, XRD, and broadband dielectric relaxation spectroscopy. ZrO2 was synthesized on fumed silica with zirconium acetylacetonate in CCl4 at 350 K for 1 h and calcinated at 773 K for 1 h (1-4 reaction cycles). PDMS (5-40 wt.%) was adsorbed onto silica and zirconia/silica from hexane solution and then dried. Grafted zirconia changes the chemistry of the surface (because of its catalytic capability) and the topology of secondary particles (because of occupation of voids in aggregates of primary silica particles by zirconia nanoparticles) responsible for the textural porosity of the powders. Therefore, many properties (such as structural characteristics of the composites, reactions on heating in air and vacuum, interfacial relaxation phenomena, hydrophobicity as a function of treatment temperature, etc.) of PDMS/zirconia/silica strongly differ from those of PDMS/A-300. Broadening of the α-relaxation of PDMS at the interfaces of disperse oxides suggests both weakening of the PDMS-PDMS interaction and strengthening of the PDMS-oxide interaction.  相似文献   

9.
The changes of property of solitons in α-helix protein molecules with three channels under influences of fluctuations of structure parameters and thermal perturbation of medium are extensively investigated using dynamic equations in the improved theory, numerical simulation and Runge-Kutta method. In this investigation the peculiarities of the solitons are given first in the motions of short-time and long-time and its collision features at T = 0 K and biological temperature T = 300 K. This study shows that the solutions of dynamic equations are solitons, which are very stable at T = 0 and 300 K, although its amplitudes and velocity are somewhat decreased relative to that at T = 0 K, the soliton can transport over 1000 amino acid residues, its lifetime is, at least, 120 ps. Subsequently, studies are made of the changes of properties of the soliton with variations of temperature of the medium and fluctuations of structure parameters including mass sequence of amino acid residues and the coupling constant, force constant, dipole–dipole interaction, chain–chain interaction and ground state energy in the α-helix proteins. The investigations indicate that the soliton has high thermal stability and can transport along the molecular chains retaining amplitude, energy and velocity, although the fluctuations of the structure parameters and temperature of the medium increase continually. However, the solitons disperse in larger fluctuations at T = 300 K and higher temperatures than 315 K. Thus it is determined that the critical temperature of the soliton is 315 K. Finally reasons are given for the generation of high thermal stability of the soliton and the correctness of the improved model is demonstrated. It is concluded that the soliton in the improved model is very robust against structure disorder and thermal perturbation of the α-helix protein molecules at 300 K, and is a possible carrier of bio-energy transport, and the improved model is maybe a candidate for the mechanism of this transport.  相似文献   

10.
Collision-induced absorption has been measured for the vibrational fundamental bands of N2 and O2 at temperatures up to 360 K. These data when combined with previously obtained lower temperature data show that the integrated band intensity of the O2 fundamental increases as the temperature is raised above 300 K. The integrated intensity of the N2 band also increases, but at a much lower rate with temperature.  相似文献   

11.
The spectral-kinetic characteristics of a ZnO:Ga single crystal upon excitation in the vacuum UV region have been studied. At a temperature of 8 K, the exciton luminescence line peaking at 3.356 eV has an extremely small half-width (7.2 meV) and a short decay time (360 ps). In the visible range, a wide luminescence band peaking at ~2.1 eV with a long luminescence time at 8 K and a decay time in the nanosecond range at 300 K is observed. The luminescence excitation spectra of ZnO:Ga have been measured in the range of 4–12.5 eV.  相似文献   

12.
在采用MOCVD技术生长的GaN膜上制备出MSM紫外光探测器,分别在室温下和94K低温下,测量了探测器对不同光波长的响应、同一光波长下对不同偏压的响应、不同斩波频率下的响应。结果表明,在94K下响应有了很大的改善。当光波长从360nm增加到450nm时,响应下降了3个数量级,而常温下只下降两个数量级,但探测器的时间响应常数变长了。  相似文献   

13.
温度对金刚石涂层膜基界面力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
简小刚  张允华 《物理学报》2015,64(4):46701-046701
利用分子动力学方法建立了硬质合金基底金刚石涂层膜基界面模型, 并采用Morse势函数和Tersoff势函数相互耦合的方法来表征模型内原子间的相互作用关系, 在此基础上对不同温度(0–800 K)条件下硬质合金基底金刚石涂层膜基界面的力学性能进行了分子动力学仿真计算. 结果表明: 当温度由0 K上升到800 K的过程中, 金刚石涂层膜基界面拉伸强度呈下降趋势, 并且在0–300 K范围内下降趋势明显, 在300–800 K范围内下降趋势缓和; 体系能量随温度的变化具有相同的下降趋势.  相似文献   

14.
The results of a first-principles study supported by the temperature-quenched laser-heated diamond anvil-cell experiments on the high-pressure high-temperature structural behavior of pure iron are reported. We show that in contrast to the widely accepted picture, the face-centered cubic (fcc) phase becomes as stable as the hexagonal-close-packed (hcp) phase at pressures around 300-360 GPa and temperatures around 5000-6000 K. Our temperature-quenched experiments indicate that the fcc phase of iron can exist in the pressure-temperature region above 160 GPa and 3700 K, respectively. This, in particular, means that the actual structure of the Earth's core may be a complex phase with a large number of stacking faults.  相似文献   

15.
用惰性气体蒸发和真空原位加压方法制备了两种具有清洁界面的纳米离子固体CaF2(平均粒度为16nm)和Ca0.75La0.25F2.25(平均粒度为11nm),在31℃至530℃详细测量了其复阻抗谱。结果表明:1)在300—530℃两种纳米离子导体都很好地遵从Arrhenius方程式;2)纳米CaF2的离子电导率比多晶CaF2约高1个数量级、比单晶CaF2  相似文献   

16.
We study numerically the propagating properties of soliton-transported bio-energy excited in the a-helix protein molecules with three channels in the cases of the short-time and long-time motions and its features of collision at temperature T = 0 and biological temperature T = 300 K by the dynamic equations in the improved Davydov theory and fourth-order Runge-Kutta method, respectively. From these simulation experiments we see that the new solitons in the improved model can move without dispersion at a constant speed retaining its shape and energy in the cases of motion of both short-time or T = 0 and long time or T = 300 K and can go through each other without scattering in their collisions. In these cases its lifetime is, at least, 120 ps at 300 K, in which the soliton can travel over about 700 amino acid residues. This result is consistent with analytic result obtained by quantum perturbed theory in this model. In the meanwhile, the influences of structure disorder of a-helix protein molecules, including the inhomogeneous distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole interaction, exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied by the fourth-order Runge-Kutta method. The results show that the soliton still is very robust against the structure disorders and thermal perturbation of proteins at biological temperature 300 K. Therefore we can conclude that the new soliton in the a-helix protein molecules with three channels is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.  相似文献   

17.
We study numerically the propagating properties of soliton-transported bio-energy excited in the α-helix protein molecules with three channels in the cases of the short-time and long-time motions and its features of collision at temperature T = 0 and biological temperature T = 300 K by the dynamic equations in the improved Davydov theory and fourth-order Runge-Kutta method, respectively. From these simulation experiments we see that the new solitons in the improved model can move without dispersion at a constant speed retaining its shape and energy in the cases of motion of both short-time or T = 0 and long time or T = 300 K and can go through each other without scattering in their collisions. In these cases its lifetime is, at least, 120 ps at 300 K, in which the soliton can travel over about 700 amino acid residues. This result is consistent with analytic result obtained by quantum perturbed theory in this model. In the meanwhile, the influences of structure disorder of α-helix protein molecules, including the inhomogeneous distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole interaction, exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied by the fourth-order Runge-Kutta method. The results show that the soliton still is very robust against the structure disorders and thermal perturbation of proteins at biological temperature 300 K. Therefore we can conclude that the new soliton in the α-helix protein molecules with three channels is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.  相似文献   

18.
A Nd(3+)-doped fiber ring laser pumped by a CW Ti:sapphire tunable laser is reported. The characteristics of the system are studied for the first time at 77K and 300K. The results show a lower threshold and a higher slope efficiency at 77K than that at 300K. Applications of the Nd~(3+)-doped fiber ring laser in a multiplexing fiber sensor system and a fiber-ring-laser type temperature sensor are discussed.  相似文献   

19.
The amorphous carbon film/n-Si (a-C/n-Si) heterojunctions have been fabricated by direct current magnetron sputtering at room temperature, and their current-voltage characteristics have been investigated. The results show that these junctions have good rectifying properties in the temperature range 80-300 K. The interesting result is that the current-voltage curve changes dramatically with increasing applied voltage and temperature. For the forward bias voltages, the junction shows Ohmic mechanism characteristic in the temperature range 240-300 K. However, the conduction mechanism changes from Ohmic for the low bias voltages to space charge limited current for the high bias voltages in the temperature range 80-240 K. While for the reverse bias voltages, it changes from Schottky emission to breakdown with increasing voltage. Another important phenomenon is that the temperature dependence of the junction resistance shows a metal-insulator transition, whose transition temperature can be controlled by the bias voltage.  相似文献   

20.
通过测量光电流,直接观察了InGaN/GaN量子阱中载流子的泄漏程度随温度升高的变化关系。当LED温度从300K升高到360K时,在相同的光照强度下,LED的光电流增大,说明在温度上升之后,载流子从量子阱中逃逸的数目更多,即载流子泄漏比例增大。同时,光电流的增大在激发密度较低的时候更为明显,而且光电流随温度的增加幅度与激发光子的能量有关。用量子阱-量子点复合模型能很好地解释所观察到的实验现象。实验结果直接证明,随着温度的升高,InGaN/GaN量子阱中的载流子泄漏将显著增加,而且在低激发密度下这一效应更为明显。温度升高导致的载流子泄漏增多是InGaN多量子阱LED发光效率随温度升高而降低的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号