首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study numerically the propagating properties of soliton-transported bio-energy excited in the α-helix protein molecules with three channels in the cases of the short-time and long-time motions and its features of collision at temperature T = 0 and biological temperature T = 300 K by the dynamic equations in the improved Davydov theory and fourth-order Runge-Kutta method, respectively. From these simulation experiments we see that the new solitons in the improved model can move without dispersion at a constant speed retaining its shape and energy in the cases of motion of both short-time or T = 0 and long time or T = 300 K and can go through each other without scattering in their collisions. In these cases its lifetime is, at least, 120 ps at 300 K, in which the soliton can travel over about 700 amino acid residues. This result is consistent with analytic result obtained by quantum perturbed theory in this model. In the meanwhile, the influences of structure disorder of α-helix protein molecules, including the inhomogeneous distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole interaction, exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied by the fourth-order Runge-Kutta method. The results show that the soliton still is very robust against the structure disorders and thermal perturbation of proteins at biological temperature 300 K. Therefore we can conclude that the new soliton in the α-helix protein molecules with three channels is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.  相似文献   

2.
The changes of property of solitons in α-helix protein molecules with three channels under influences of fluctuations of structure parameters and thermal perturbation of medium are extensively investigated using dynamic equations in the improved theory, numerical simulation and Runge-Kutta method. In this investigation the peculiarities of the solitons are given first in the motions of short-time and long-time and its collision features at T = 0 K and biological temperature T = 300 K. This study shows that the solutions of dynamic equations are solitons, which are very stable at T = 0 and 300 K, although its amplitudes and velocity are somewhat decreased relative to that at T = 0 K, the soliton can transport over 1000 amino acid residues, its lifetime is, at least, 120 ps. Subsequently, studies are made of the changes of properties of the soliton with variations of temperature of the medium and fluctuations of structure parameters including mass sequence of amino acid residues and the coupling constant, force constant, dipole–dipole interaction, chain–chain interaction and ground state energy in the α-helix proteins. The investigations indicate that the soliton has high thermal stability and can transport along the molecular chains retaining amplitude, energy and velocity, although the fluctuations of the structure parameters and temperature of the medium increase continually. However, the solitons disperse in larger fluctuations at T = 300 K and higher temperatures than 315 K. Thus it is determined that the critical temperature of the soliton is 315 K. Finally reasons are given for the generation of high thermal stability of the soliton and the correctness of the improved model is demonstrated. It is concluded that the soliton in the improved model is very robust against structure disorder and thermal perturbation of the α-helix protein molecules at 300 K, and is a possible carrier of bio-energy transport, and the improved model is maybe a candidate for the mechanism of this transport.  相似文献   

3.
We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge-Kutta method and physical parameter values appropriate to the $\alpha$-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.  相似文献   

4.
The influence of molecular structure disorders and physiological temperature on the states and properties of solitons as transporters of bio-energy are numerically studied through the fourth-order Runge-Kutta method and a new theory based on my paper [Front. Phys. China, 2007, 2(4): 469]. The structure disorders include fluctuations in the characteristic parameters of the spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant, as well as the chain-chain interaction coefficient among the three channels and ground state energy resulting from the disorder distributions of masses of amino acid residues and impurities. In this paper, we investigate the behaviors and states of solitons in a single protein molecular chain, and in α-Helix protein molecules with three channels. In the former we prove first that the new solitons can move without dispersion, retaining its shape, velocity and energy in a uniform and periodic protein molecule. In this case of structure disorder, the fluctuations of the spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant, as well as the ground state energy and the disorder distributions of masses of amino acid residues of the proteins influence the states and properties of motion of solitons. However, they are still quite stable and are very robust against these structure disorders, even in the presence of larger disorders in the sequence of masses, spring constants and coupling constants. Still, the solitons may disperse or be destroyed when the disorder distribution of the masses and fluctuations of structure parameters are quite great. If the effect of thermal perturbation of the environment on the soliton in nonuniform proteins is considered again, it is still thermally stable at the biological temperature of 300 K, and at the longer time period of 300 ps and larger spacing of 400 amino acids. The new soliton is also thermally stable in the case of motion over a long time period of 300 ps in the region of 300–320 K under the influence of the above structure disorders. However, the soliton disperses in the case of a higher temperature of 325 K and in larger structure disorders. Thus, we determine that the soliton’s lifetime and critical temperature are 300 ps and 300–320 K, respectively. These results are also consistent with analytical data obtained via quantum perturbed theory. In α-Helix protein molecules with three channels, results obtained show that these structure disorders and quantum fluctuations can change the states and features of solitons, decrease their amplitudes, energies and velocities, but they still cannot destroy the solitons, which can still transport steadily along the molecular chains while retaining energy and momentum when the quantum fluctuations are small, such as in structure disorders and quantum fluctuations of $ 0.67 < \alpha _k < 2,\Delta W = \pm 8\% \overline W ,\Delta J = \pm 1\% \overline J ,\Delta (\chi _1 + \chi _2 ) = \pm 3\% (\bar \chi _1 + \bar \chi _2 ) $ and $ \Delta L = \pm 1\% \bar L $ and $ \Delta \varepsilon _0 = \varepsilon \left| {\beta _n } \right|,\varepsilon = 0.1 meV,\left| {\beta _n } \right| < 0.5 $ . Therefore, the solitons in the improved model are quite robust against these disorder effects. However, the solitons may be dispersed or disrupted in cases of very large structure disorders. When the influence of temperature on solitons is considered, we find that the new solitons can transport steadily over 333 amino acid residues in the case of motion over a long time period of 120 ps, and can retain their shapes and energies to travel forward along protein molecules after mutual collision of the solitons at the biological temperature of 300 K. Therefore, the soliton is also very robust against thermal perturbation of the α-helix protein molecules at 300 K. However, the soliton disperses in cases of higher temperatures at 325 K and in larger structure disorders. Thus, their critical temperature is about 320 K. When the effects of structure disorder and temperature are considered simultaneously, the soliton has high thermal stability and can transport for a long time along the protein molecular chains while retaining its amplitude, energy and velocity, even though the fluctuations of the structure parameters and temperature of the medium increase continually. However, the soliton disperses in the larger fluctuations of $ 0.67\overline M < M_k < 2\overline M , \Delta (\chi _1 + \chi _2 ) = \pm 2\% (\bar \chi _1 + \bar \chi _2 ), \Delta J = \pm 1.3\% \bar J, \Delta W = \pm 6\% \overline W , \Delta L = \pm 1.5\% \overline L $ and $ \Delta \varepsilon _0 = \varepsilon \left| {\beta _n } \right|, \varepsilon = 0.82 meV, \left| {\beta _n } \right| \leqslant 0.5 $ at T=300 K, and at temperatures higher than 315 K when the fluctuations are $ 0.67\overline M < M_k < 2\overline M , \Delta (\chi _1 + \chi _2 ) = \pm 1\% (\bar \chi _1 + \bar \chi _2 ), \Delta J = \pm 0.7\% \bar J, \Delta W = \pm 7\% \overline W , \Delta L = \pm 0.8\% \overline L $ and $ \Delta \varepsilon _0 = \varepsilon \left| {\beta _n } \right|, \varepsilon = 0.4 meV, \left| {\beta _n } \right| \leqslant 0.5 $ . This means that the critical temperature of the soliton is only 315 K in this condition. In a word, we can conclude from the above investigations that the soliton in the improved model is very robust against the structure disorders and thermal perturbation of proteins at the biological temperature of 300 K in α-helix protein molecules, and is a possible bio-energy transport carrier; the improved model is a possible candidate for the mechanism of this transport.  相似文献   

5.
The influence of molecular structure disorders and physiological temperature on the states and properties of solitons as transporters of bio-energy are numerically studied through the fourth-order Runge-Kutta method and a new theory based on my paper [Front. Phys. China, 2007, 2(4): 469]. The structure disorders include fluctuations in the characteristic parameters of the spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant, as well as the chain-chain interaction coefficient among the three channels and ground state energy resulting from the disorder distributions of masses of amino acid residues and impurities. In this paper, we investigate the behaviors and states of solitons in a single protein molecular chain, and in α-Helix protein molecules with three channels. In the former we prove first that the new solitons can move without dispersion, retaining its shape, velocity and energy in a uniform and periodic protein molecule. In this case of structure disorder, the fluctuations of the spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant, as well as the ground state energy and the disorder distributions of masses of amino acid residues of the proteins influence the states and properties of motion of solitons. However, they are still quite stable and are very robust against these structure disorders, even in the presence of larger disorders in the sequence of masses, spring constants and coupling constants. Still, the solitons may disperse or be destroyed when the disorder distribution of the masses and fluctuations of structure parameters are quite great. If the effect of thermal perturbation of the environment on the soliton in nonuniform proteins is considered again, it is still thermally stable at the biological temperature of 300 K, and at the longer time period of 300 ps and larger spacing of 400 amino acids. The new soliton is also thermally stable in the case of motion over a long time period of 300 ps in the region of 300–320 K under the influence of the above structure disorders. However, the soliton disperses in the case of a higher temperature of 325 K and in larger structure disorders. Thus, we determine that the soliton’s lifetime and critical temperature are 300 ps and 300–320 K, respectively. These results are also consistent with analytical data obtained via quantum perturbed theory. In α-Helix protein molecules with three channels, results obtained show that these structure disorders and quantum fluctuations can change the states and features of solitons, decrease their amplitudes, energies and velocities, but they still cannot destroy the solitons, which can still transport steadily along the molecular chains while retaining energy and momentum when the quantum fluctuations are small, such as in structure disorders and quantum fluctuations of and and . Therefore, the solitons in the improved model are quite robust against these disorder effects. However, the solitons may be dispersed or disrupted in cases of very large structure disorders. When the influence of temperature on solitons is considered, we find that the new solitons can transport steadily over 333 amino acid residues in the case of motion over a long time period of 120 ps, and can retain their shapes and energies to travel forward along protein molecules after mutual collision of the solitons at the biological temperature of 300 K. Therefore, the soliton is also very robust against thermal perturbation of the α-helix protein molecules at 300 K. However, the soliton disperses in cases of higher temperatures at 325 K and in larger structure disorders. Thus, their critical temperature is about 320 K. When the effects of structure disorder and temperature are considered simultaneously, the soliton has high thermal stability and can transport for a long time along the protein molecular chains while retaining its amplitude, energy and velocity, even though the fluctuations of the structure parameters and temperature of the medium increase continually. However, the soliton disperses in the larger fluctuations of and at T=300 K, and at temperatures higher than 315 K when the fluctuations are and . This means that the critical temperature of the soliton is only 315 K in this condition. In a word, we can conclude from the above investigations that the soliton in the improved model is very robust against the structure disorders and thermal perturbation of proteins at the biological temperature of 300 K in α-helix protein molecules, and is a possible bio-energy transport carrier; the improved model is a possible candidate for the mechanism of this transport.   相似文献   

6.
Utilizing the improved model with quasi-coherent two-quantum state and new Hamiltonian containing an additional interaction term [Phys. Rev. E62 (2000) 6989 and Euro. Phys. J. B19 (2001) 297] we study numerically the influences of the quantum and disorder effects including distortion of the sequences of masses of amino acid molecules and fluctuations of force constant of molecular chains, and of exciton-phonon coupled constants and of the dipole-dipole interaction constant and of the ground state energy on the properties of the solitons transported the bio-energy in the protein molecules by Runge-Kutta method. The results obtained show that the new soliton is robust against these structure disorders, especially for stronger disorders in the sequence of masses spring constants and coupling constants, except for quite larger fluctuations of the ground state energy and dipole-dipole interaction constant. This means that the new soliton in the improved model is very stable in normal cases and is possibly a carrier of bio-energy transport in the protein molecules.  相似文献   

7.
The bio-energy transport is a basic problem in life science and related to many biological processes. Therefore to establish the mechanism of bio-energy transport and its theory have an important significance. Based on different properties of structure of α-helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov's, Takeno's, Yomosa's, Brown et al.'s, Schweitzer's, Cruzeiro-Hansson's, Forner's and Pang's models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties, thermal stability and lifetimes of the carriers (solitons) transporting the bio-energy at physiological temperature 300 K in Pang's and Davydov's theories. From these investigations we know that the carrier (soliton) of bio-energy transport in the α-helical protein molecules in Pang's model has a higher binding energy, higher thermal stability and larger lifetime at 300 K relative to those of Davydov's model, in which the lifetime of the new soliton at 300 K is enough large and belongs to the order of 10(-10) s or τ/τ(0)≥700. Thus we can conclude that the soliton in Pang's model is exactly the carrier of the bio-energy transport, Pang's theory is appropriate to α-helical protein molecules.  相似文献   

8.
用庞小峰先生提出的生物能量传递的新理论和 Runge-Kutta数值模拟方法,研究了三通道α-螺旋蛋白质中激发的孤子的动力学特性,求出在0K和300K温度下该孤子稳定地沿蛋白质链传递.由此可见,它能担任在蛋白质分子中传递生物能量的功能.从而再次证实了新理论的可利用性.  相似文献   

9.
A new theory of bio-energy transport along protein molecules, where energy is released by the hydrolysis of adenosine triphosphate (ATP), has recently been proposed for some physical and biological reasons. In this theory, Davydov’s Hamiltonian and wave function of the systems are simultaneously improved and extended. A new interaction has been added into the original Hamiltonian. The original wave function of the excitation state of single particles has been replaced by a new wave function of the two-quanta quasi-coherent state. In such a case, bio-energy is carried and transported by the new soliton along protein molecular chains. The soliton is formed through the self-trapping of two excitons interacting with amino acid residues. The exciton is generated by the vibration of amide-I (C=O stretching) arising from the energy of the hydrolysis of ATP. The properties of the soliton are extensively studied by analytical methods and its lifetime for a wide range of parameter values relevant to protein molecules is calculated using the nonlinear quantum perturbation theory. The lifetime of the new soliton at the biological temperature of 300 K is large enough and belongs to the order of 10-10 s or τ/τ0 ≥ 700. The different properties of the new soliton are further studied. The results show that the new soliton in the new model is a better carrier of bio-energy transport and it can play an important role in biological processes. This model is a candidate of the bio-energy transport mechanism in protein molecules.  相似文献   

10.
A new theory of bio-energy transport along protein molecules, where energy is released by the hydrolysis of adenosine triphosphate (ATP), has recently been proposed for some physical and biological reasons. In this theory, Davydov’s Hamiltonian and wave function of the systems are simultaneously improved and extended. A new interaction has been added into the original Hamiltonian. The original wave function of the excitation state of single particles has been replaced by a new wave function of the two-quanta quasi-coherent state. In such case, bio-energy is carried and transported by the new soliton along protein molecular chains. The soliton is formed through the self-trapping of two excitons interacting with amino acid residues. The exciton is generated by the vibration of amide-I (C=O stretching) arising from the energy of the hydrolysis of ATP. The properties of the soliton are extensively studied by analytical methods and its lifetime for a wide range of parameter values relevant to protein molecules is calculated using the nonlinear quantum perturbation theory. The life-time of the new soliton at the biological temperature of 300 K is large enough and belongs to the order of 10−10 s or τ/τ 0 ⩾ 700. The different properties of the new soliton are further studied. The results show that the new soliton in the new model is a better carrier of bio-energy transport and it can play an important role in biological processes. This model is a candidate of the bio-energy transport mechanism in protein molecules.   相似文献   

11.
We study the effects of quantum fluctuations and thermal perturbations on the lifetime of the soliton in the improved Davydov model proposed by us with two-quanta and with an added interaction. By using quantum perturbation theory, we compute the soliton lifetime for a wide ranges of parameter values relevant for protein molecules. The lifetime of the new soliton at the biological temperature 300 K is of the order of 10-10 second or τ/τ≥ 500 for parameters appropriate to α-helical protein molecules. This shows clearly that the new soliton in the improved model is a viable mechanism for the bio-energy transport in the α-helix region of proteins. Received 7 January 1999 and Received in final form 16 August 2000  相似文献   

12.
为了得到温度对中心对称光折变晶体中空间暗孤子影响的结果,数值研究了中心对称光折变暗孤子动态演化的温度特性。结果表明,孤子强度包络演化强烈地依赖于晶体的温度和介电常数的温度特性。在290-320K的温度变化范围内,暗孤子的宽度随温度的增加而变大,孤子的峰值强度随温度的增加而变小。在300K的温度下,中心对称光折变介质中可以形成稳定的暗空间孤子,当温度从300K升高或降低时,孤子将克服较小的扰动而保持稳定的传播。通过调整温度可以改变孤子的空间形态。  相似文献   

13.
The properties of proton transfer along hydrogen-bonded molecular systems are studied at finite temperature. The dynamic equations of the proton transport along the systems are obtained by using a completely quantummechanics method. From the dynamic equations and its soliton solutions we find out specific heat arising from the motionof solitons in the systems with finite temperature and the critical temperature of the soliton in the protein molecules,which is about 318 K. This shows that we can continuously study some biological phenomena in the living systems bythis model.  相似文献   

14.
The properties of proton transfer along hydrogen-bonded molecular systems are studied at finite temperature. The dynamic equations of the proton transport along the systems are obtained by using a completely quantum mechanics method. From the dynamic equations and its soliton solutions we find out specific heat arising from the motion of solitons in the systems with finite temperature and the critical temperature of the soliton in the protein molecules, which is about 318 K. This shows that we can continuously study some biological phenomena in the living systems by this model.  相似文献   

15.
敖胜美  颜家壬  俞慧友 《中国物理》2007,16(6):1526-1533
We solve the generalized nonlinear Schr\"{o}dinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.  相似文献   

16.
徐中巍  张祖兴 《物理学报》2013,62(10):104210-104210
报道了一种带有周期性双折射光纤滤波器的全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 通过数值模拟发现加入滤波器后激光器能输出多波长耗散孤子脉冲, 调节滤波器带宽大小可以得到不同波长个数和波长间隔的多波长锁模耗散孤子脉冲. 在激光器产生的四波长和五波长耗散孤子脉冲中观察到了耗散孤子分子, 并且通过调节滤波器参数和饱和功率可以改变多波长脉冲中耗散孤子分子的个数和波长. 这是在被动锁模光纤激光器中首次实现包含有耗散孤子分子的多波长脉冲. 另外还在实验上实现了全正色散双波长被动锁模耗散孤子的产生. 关键词: 全正色散 耗散孤子 多波长脉冲 孤子分子  相似文献   

17.
The structure aperiodicities can influence seriously the features of motion of soliton excited in the α-helix protein molecules with three channels. We study the influence of structure aperiodicities on the features of the soliton in the improved model by numerical simulation and Runge-Kulta method. The results obtained show that the new soliton is very robust against the structure aperiodieities including large disorder in the sequence of mass of the amino acids and fluctuations of spring constant, coupling constant, dipole-dipole interactional constant, ground state energy and chain-chain interaction. However, very strong structure aperiodieities can also destroy the stability of the soliton in the α-helix protein molecules.  相似文献   

18.
The dynamic properties of proton conductivity along hydrogen-bonded molecular systems,for example,ice crystal,with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our Soliton model.The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium,the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium,but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient.In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crystal.This shows that our model is available and appropriate to ice.  相似文献   

19.
研究了基于双光束耦合的光折变耗散系统中全息明孤子的温度演化特性.数值计算结果表明,晶体温度与刚性全息孤子的稳定性密切相关.在一定温度下,全息孤子能在晶体中传播足够远的距离;当晶体温度漂移不大时,入射孤子能演化成稳定的全息孤子继续传播;而当晶体温度变化足够大时,孤子波强度随传播距离增加或减小,入射孤子不能以稳定的全息孤子态传播.讨论了将刚性全息孤子的温度特性应用于光学衰减、中继器件的可能性. 关键词: 空间光孤子 光折变非线性光学 耗散系统 全息聚焦  相似文献   

20.
Soliton molecules were first discovered in optical systems and are currently a hot topic of research. We obtain soliton molecules of the(2+1)-dimensional fifth-order Kd V system under a new resonance condition called velocity resonance in theory. On the basis of soliton molecules, asymmetric solitons can be obtained by selecting appropriate parameters. Based on the N-soliton solution, we obtain hybrid solutions consisting of soliton molecules,lump waves and breather waves by partial velocity resonance and partial long wave limits. Soliton molecules,and some types of special soliton resonance solutions, are stable under the meaning that the interactions among soliton molecules are elastic. Both soliton molecules and asymmetric solitons obtained may be observed in fluid systems because the fifth-order Kd V equation describes the ion-acoustic waves in plasmas, shallow water waves in channels and oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号