首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have fabricated cupric oxide (CuO)-core/silica (SiO x )-shell nanowires by using a two-step process: thermal oxidation and sputtering. The structure and photoluminescence (PL) properties of the core/shell nanowires has been investigated by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and PL analysis techniques. The CuO cores and the SiO x shells of the as-synthesized nanowires have crystalline monoclinic CuO and amorphous SiO x structures, respectively. The PL emission intensity of the CuO-core/SiO x -shell nanowires has been increased but the emission peak position has not been nearly shifted by annealing in a nitrogen atmosphere, whereas the emission peak position has been shifted a lot from 510 to around 650 nm as well as the emission intensity has been increased by annealing in an oxygen atmosphere. In addition, the origin of the PL enhancement in the CuO-core/SiO x -shell nanowires by annealing and the growth mechanism of the CuO nanowires have been discussed.  相似文献   

2.
We fabricated Co-coated SiOx nanowires and investigated the effects of thermal annealing on their properties. The sputtering process resulted in the formation of a relatively smooth Co shell layer, whereas subsequent thermal annealing generated the Co3O4 phase. The photoluminescence (PL) spectrum was not changed by the Co-coating, whereas the thermal annealing induced new peaks in the yellow and ultraviolet regions. Possible emission mechanisms were discussed. Based on the magnetization measurements of the SiOx-core/Co-shell nanowires, we obtained small and negligible hysteresis loops for the as-fabricated and thermal annealed samples, respectively.  相似文献   

3.
We reported the preparation and annealing effects of Zinc oxide ZnO/SiOx core-shell nanowires, in which ZnO shell layers were deposited by sputtering. Based on scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and photoluminescence (PL) investigations, we monitored structural and optical changes with respect to the post-annealing process. The samples were mostly amorphous with some crystalline ZnO structure, whereas annealing at 900-1000 °C reduced the amount of Zn elements. Thermal annealing induced change in the shape of the PL emission spectra.  相似文献   

4.
Influences of the TiO2 coating and thermal annealing on the photoluminescence (PL) properties of ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the sputtering technique. The PL emission of ZnS nanowires can be significantly enhanced without nearly changing the wavelength of the emission by coating them with a TiO2 layer with an appropriate thickness and then annealing them in an Ar atmosphere. The optimum TiO2 coating layer thickness for the highest PL emission enhancement was found to be about 6.5 nm. The PL emission of the ZnS-core/TiO2-shell coaxial nanowires is degraded by annealing in an oxygen atmosphere whereas it is enhanced by annealing in an argon atmosphere.  相似文献   

5.
CuO-core/ SnO2-shell one-dimensional nanostructures have been fabricated by thermal oxidation of a copper foil and then atomic layer deposition of SnO2. The structure and optical properties of the nanostructures have been investigated by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, photoluminescence (PL) spectroscopy, and energy-dispersive X-ray analysis techniques. The nanostructures are found to have the form of nanorods, with the diameter of the CuO cores being in the range from a few tens to a few hundreds of nanometers, the thickness of the SnO2 shells being ~15 nm, and with a length of a few tens of micrometers. The CuO cores and the SnO2 shells of the as-synthesized nanorods have crystalline monoclinic CuO and amorphous SnO2 structures, respectively, but the SnO2 shells are found to crystallize to tetragonal SnO2 on thermal annealing. The PL emission intensity of the CuO nanorods has been slightly increased by SnO2 coating. The PL emission of the SnO2-coated CuO nanorods is somewhat increased and the emission peak position is red-shifted from 550 to 580 nm by annealing in a reducing atmosphere. On the other hand, the PL emission is significantly increased and the emission peak position is shifted from 550 nm further to around 595 nm by annealing in an oxidative atmosphere. In addition, the origins of the PL enhancements in the nanorods by coating and annealing are discussed.  相似文献   

6.
《Physics letters. A》2020,384(8):126174
SiO2 nanowires have been successfully synthesized on the surface of the silicon substrate via a thermal evaporation method using SnO2 powders as the catalysts. The final synthesized product was systematically studied by X-ray powder diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), and electron energy dispersive X-ray (EDX), UV-Visible absorption and photoluminescence (PL) spectroscopy. The results reveal that in the reaction and growth process, the real catalytic effect is Sn and SnOx, and the growth of SiO2 nanowire is most likely controlled by VLS mechanism. The PL spectral results indicate the obtained products have a stable yellow-green emission range. The products have improved performance and can be used in optoelectronic semiconductor devices.  相似文献   

7.
《Current Applied Physics》2010,10(4):1017-1021
ZnSe nanowires have been synthesized by thermal evaporation of ZnSe powders on gold-coated Al2O3(0 0 0 1) substrates and then sheathed with TiO2 by sputtering. Our results show that sheathing Zn nanowires with thin TiO2 layers can significantly enhance the photoluminescence (PL) emission intensity. XPS analysis results suggest that the PL enhancement is attributed to increases in the concentrations of deep levels such as oxygen and titanium interstitials as well as the density of interface states. The PL emission of ZnSe nanowires is also enhanced by thermal annealing. Annealing in an argon atmosphere is more efficient in enhancing the PL emission than annealing in an oxygen atmosphere.  相似文献   

8.
郑立仁  黄柏标  尉吉勇 《物理学报》2009,58(4):2306-2312
以N2/H2、N2或NH3为载气,利用碳辅助化学气相沉积法,常压1140℃下在石英衬底上制备了大量直径为20—300 nm,长数百微米的非晶SiOx纳米线.制备得到的纳米线具有高度定向生长的特性.利用透射电子显微镜、扫描电子显微镜及电子能谱对SiOx纳米线的形貌及组分进行了分析,Si与O原子之比为1∶18.傅里叶红外吸收谱显示了非晶氧化硅的三个特征峰(482,806和1095 cm-1)及1132 cm-1无序氧化硅结构的强吸收峰.SiOx纳米线光致发光光谱(PL)在440 nm(283 eV)处具有较强的荧光峰;N2为载气生长的SiOx纳米线的PL峰强比NH3为载气生长的SiOx纳米线峰强大四个数量级. 关键词x纳米线')" href="#">SiOx纳米线 碳辅助化学气相沉积法 傅里叶红外吸收 光致发光  相似文献   

9.
Manganese-doped zinc silicate (Zn2SiO4:Mn) is a kind of phosphor material that has a photo-luminescent (PL) and cathode-luminescent (CL) properties with intensive green light emission at 520 nm. The particles consisting of SiO2@Zn2SiO4:Mn (SiO2 core-Zn2SiO4:Mn shell) were synthesized via colloidal process and forced precipitation. After drying, the Zn/Mn precipitates were coated on the surface of SiO2 particles. The Zn/Mn precipitates reacted with SiO2 and transformed to Zn2SiO4:Mn by suitable calcination. The microstructure, crystalline phase, and luminescent characteristics of the products were studied. Besides, a CL device consisting of the core-shell powder was characterized.  相似文献   

10.
采用对非晶氧化硅薄膜退火处理方法,获得纳米晶硅与氧化硅的镶嵌结构.室温下观察到峰位为2.40eV光致发光.系统地研究了不同退火温度对薄膜的Raman谱、光荧光谱及光电子谱的影响.结果表明,荧光谱可分成两个不随温度变化的峰位为1.86和2.30eV的发光带.Si2p能级光电子谱表明与发光强度一样Si4+强度随退火温度增加而增加.Si平均晶粒大小为4.1—8.0nm,不能用量子限制模型解释蓝绿光的发射.纳米晶硅与SiO2界面或SiO2中与氧有关的缺陷可能是蓝绿光发射的主要原因 关键词:  相似文献   

11.
This paper presents the use of the simple annealing technique at 1000 °C to produce the helical nanostructures of SiOx. We have employed the Co-coated Si substrates, with Co layer and Si substrate utilized as catalyst and Si source, respectively. Beside the ordinary straight nanowires, the helical nanowires such as nanosprings and nanorings were observed. The product was an amorphous structure of SiOx. We have discussed the possible growth mechanism. Photoluminescence spectrum of the SiOx nanostructures showed a blue emission at 428 nm and a green emission at 534 nm, respectively.  相似文献   

12.
The pump fluence dependent photoluminescence (PL) spectra of SnO2 nanowires were investigated, which were synthesized with a high-temperature chemical reduction method. The integrated intensity of the narrower peak at 3.2 eV experiences a strong superlinear dependence on the pump fluence, and the narrowest width of the sharp peak is only 19 meV. Moreover, under high excitation fluence, an ultrafast decay time (less than 20 ps) appears in the time-resolved PL spectra. The emission of these SnO2 nanowires shows strong apparent stimulated emission behaviors although the SnO2 is a dipole forbidden direct gap semiconductor. The stimulated emission should relate to the localized islands on the surface of nanowire, which was observed through the high resolution transmission electron microscopy (HRTEM) image. The giant-oscillator-strength effect of bound exciton generated from the localized islands was considered to induce the stimulated emission of SnO2 nanowires.  相似文献   

13.
SiO2@Gd2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by 5D0-7F2 red emission at 613 nm) under the excitation of 307 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

14.
Amorphous SiOx thin films with four different oxygen contents (x=1.15, 1.4, 1.5, and 1.7) have been prepared by thermal evaporation of SiO in vacuum and then annealed at 770 or 970 K in argon for various times ?40 min. The influence of annealing conditions and the initial film composition on photoluminescence (PL) from the annealed films has been explored. Intense room temperature PL has been observed from films with x?1.5, visible with a naked eye. It has been shown that PL spectra of most samples consists of two main bands: (i) a ‘green’ band centered at about 2.3 eV, whose position does not change with annealing conditions and (ii) an ‘orange-red’ band whose maximum moves from 2.1 to 1.7 eV with increasing annealing time and temperature and decreasing initial oxygen content. These observations have been explained assuming recombination via defect states in the SiOx matrix for the first band and emission from amorphous Si nanoparticles for the second one.  相似文献   

15.
Submicron spherical SiO2 particles have been coated with AgEu(MoO4)2 phosphor layers by a sol-gel process, followed by surface reaction at high temperature, to get core/shell structured SiO2@AgEu(MoO4)2 particles. X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the resulted core-shell phosphors. The luminescent properties of the core-shell structured phosphors have also been measured at room temperature, and their photoluminescence (PL) spectra are similar to the pure AgEu(MoO4)2 phosphor prepared by the same sol-gel method exhibiting red emission.  相似文献   

16.
E2SiO5 thin films were fabricated on Si substrate by reactive magnetron sputtering method with subsequent annealing treatment. The morphology properties of as-deposited films have been studied by scanning electron microscope. The fraction of erbium is estimated to be 23.5 at% based on Rutherford backscattering measurement in as-deposited Er-Si-O film. X-ray diffraction measurement revealed that Er2SiO5 crystalline structure was formed as sample treated at 1100 °C for 1 h in O2 atmosphere. Through proper thermal treatment, the 1.53 μm Er3+-related emission intensity can be enhanced by a factor of 50 with respect to the sample annealed at 800 °C. Analysis of pump-power dependence of Er3+ PL intensity indicated that the upconversion phenomenon could be neglected even under a high photon flux of 1021(photons/cm2/sec). Temperature-dependent photoluminescence (PL) of Er2SiO5 was studied and showed a weak thermal quenching factor of 2. Highly efficienct photoluminescence of Er2SiO5 films has been demonstrated with Er3+ concentration of 1022/cm3, and it opens a promising way towards future Si-based light source for Si photonics.  相似文献   

17.
Si quantum dots (QDs) embedded in SiO2 can be normally prepared by thermal annealing of SiOx (x < 2) thin film at 1100 °C in an inert gas atmosphere. In this work, the SiOx thin film was firstly subjected to a rapid irradiation of CO2 laser in a dot by dot scanning mode, a process termed as pre-annealing, and then thermally annealed at 1100 °C for 1 h as usual. The photoluminescence (PL) intensity of Si QD was found to be enhanced after such pre-annealing treatment. This PL enhancement is not due to the additional thermal budget offered by laser for phase separation, but attributed to the production of extra nucleation sites for Si dots within SiOx by laser irradiation, which facilitates the formation of extra Si QDs during the subsequent thermal annealing.  相似文献   

18.
Wei Zhou  Manlin Tan 《Optik》2012,123(23):2171-2173
SnO2-CuO nanocomposite was synthesized by impregnating SnO2 nanowires with CuCl2 solution and subsequent calcination. SEM and XRD were used to characterize the morphology and structure of the product. The optical properties were analyzed by Raman and photoluminescence (PL) spectra at room temperature. Except the strong orange emission of SnO2, the PL spectrum showed a red shoulder at 678 nm which originated from the interface between SnO2 and CuO.  相似文献   

19.
SnO2/ZnO hierarchical nanostructures were synthesized by a two-step carbon assisted thermal evaporation method. SnO2 nanowires were synthesized in the first step and were then used as substrates for the following growth of ZnO nanowires in the second step. Sn metal droplets were formed at the surfaces of the SnO2 nanowires during the second step and were acted as catalyst to facilitate the growth of ZnO nanowires via vapor-liquid-solid mechanism. Room temperature photoluminescence measurements showed that the SnO2/ZnO hierarchical nanostructures exhibited a strong green emission centered at about 520 nm and a weak emission centered at about 380 nm. The emissions from the SnO2 were drastically constrained due to screen effect caused by the ZnO layer.  相似文献   

20.
Amorphous silicon oxide (SiOx) nanowires were directly grown by thermal processing of Si substrates. Au and Pd–Au thin films with thicknesses of 3 nm deposited on Si (0 0 1) substrates were used as catalysts for the growth of nanowires. High-yield synthesis of SiOx nanowires was achieved by a simple heating process (1000–1150 °C) in an Ar ambient atmosphere without introducing any additional Si source materials. The as-synthesized products were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The SiOx nanowires with lengths of a few and tens of micrometers had an amorphous crystal structure. The solid–liquid–solid model of nanowire formation was shown to be valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号