首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Transparent conductive tin-doped indium oxide (In2O3:Sn, ITO) thin films with various Sn-doping concentrations have been prepared using the low cost reactive thermal evaporation (RTE) technique at a low growth temperature of ~160 °C. The structural characteristics, optical and electrical properties of the ITO thin films were investigated. These polycrystalline ITO films exhibited preferential orientation along (222) plane and possessed low resistivities ranging from 3.51 to 5.71 × 10?4 Ω cm. The decreased mobility was attributed to the scattering by ionized and neutral impurities at high doping concentrations. The optimized ITO thin film deposited with 6.0 wt% Sn-doping concentration exhibited a high average transparency of 87 % in the wavelength range of 380–900 nm and a low resistivity of 3.74 × 10?4 Ω cm with a high Hall mobility of 47 cm2 V?1s?1. A hydrogenated amorphous silicon and silicon–germanium (a-Si:H/a-SiGe:H) double-junction solar cell fabricated with the RTE-grown ITO electrodes presented a conversion efficiency of 10.51 %.  相似文献   

2.
We investigated the role of hydrogen impurities in highly oriented In-doped ZnO (IZO:H) films. The conductivity of ZnO:H films exhibit small variation despite the increase of hydrogen ratio. The small variation of the carrier concentration in IZO:H films can be explained by the reduction of the oxygen deficiency for the charge neutrality and the increase of Vzn-H bonding for partially charge compensation in the films. The additional mode at 573 cm−1 is interpreted as vacancy clusters. The discrepancy between the increase of vacancy clusters (573 cm−1) and small variation of carrier concentration is attributed to the different physical characteristics of the IZO:H films due to the hydrogen existence between bulk and surface. The measured FT-IR peak at 3500 cm−1 exhibits typical characteristic of O-H bonding.  相似文献   

3.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

4.
Nanocrystalline ZnO thin films were deposited at different temperatures (Ts = 325 °C–500 °C) by intermittent spray pyrolysis technique. The thickness (300 ± 10 nm) independent effect of Ts on physical properties was explored. X-Ray diffraction analysis revealed the growth of wurtzite type polycrystalline ZnO films with dominant c-axis orientation along [002] direction. The crystallite size increased (31 nm–60 nm) and optical band-gap energy decreased (3.272 eV–3.242 eV) due to rise in Ts. Scanning electron microscopic analysis of films deposited at 450 °C confirmed uniform growth of vertically aligned ZnO nanorods. The films deposited at higher Ts demonstrated increased hydrophobic behavior. These films exhibited high transmittance (>91%), low dark resistivity (~10?2 Ω-cm), superior figure of merit (~10?3 Ω?1) and low sheet resistance (~102 Ω/□). The charge carrier concentration (η -/cm3) and mobility (μ – cm2V?1s?1) are primarily governed by crystallinity, grain boundary passivation and oxygen desorption effects.  相似文献   

5.
The hydrotreated Li–W co-doped ZnO (LWZO:H) thin films was prepared on quartz glass substrates by RF magnetron sputtering at substrate temperature 100 °C with varied hydrogen flow ratios. The X-ray diffraction spectra indicated that the hydrotreating Li–W co-doped ZnO films showed a preferred orientation toward the c-axis. The chemical compositions of all samples were confirmed by X-ray photoelectron spectroscopy, which clearly showed the existence of W as a doping element into ZnO crystal lattice. The surface morphology of LWZO:H thin films changed with the increasing R value can clearly be seen. The average transmittance of the films was found to be almost 85 % for the wavelength range of 400–1,200 nm. Meanwhile, the optical band gap increase of the films may be attributed to the band Burstein–Moss effect.  相似文献   

6.
Ag-doped ZnO thin films were deposited on quartz glass substrates by a radio-frequency (RF) magnetron sputtering technique at room temperature (RT). The influence of Ag doping content on the electrical and Raman scattering properties of ZnO films were systematically investigated by Hall measurement system and Raman scattering spectrum. Two additional local vibrational modes (LVMs) at 230.0 and 394.5 cm?1 induced by Ag dopant in ZnO:Ag films were observed by Raman analyses at RT, corresponding to Ag atoms located at O sites (LV MZn?Ag) and Zn sites (LV MAg?O) in ZnO lattice. Moreover, we further studied the effect of donor AgO and acceptor AgZn defects on the electrical properties of ZnO:Ag films. The results indicate that O-rich condition is preferred to suppress the formation of AgO defects and enhance AgZn defects. The p-type ZnO:Ag film was achieved by properly optimizing the annealing conditions under O-rich condition.  相似文献   

7.
In order to obtain p-type ZnO thin films, effect of atomic ratio of Zn:N:Al on the electronic and structural characteristic of ZnO thin films was investigated. Hall measurement indicated that with the increase of Al doping, conductive type of as-grown ZnO thin films changed from n-type to p-type and then to n-type again, reasons are discussed in details. Results of X-ray diffraction revealed that co-doped ZnO thin films have similar crystallization characteristic (0 0 2 preferential orientation) like that of un-doping. However, SEM measurement indicated that co-doped ZnO thin films have different surface morphology compared with un-doped ZnO thin films. p-type ZnO thin films with high hole concentration were obtained on glass (4.6 × 1018 cm−3) and n-type silicon (7.51 × 1019 cm−3), respectively.  相似文献   

8.
Ag掺杂p型ZnO薄膜及其光电性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用超声喷雾热分解法在石英衬底上以醋酸锌水溶液为前驱体,以硝酸银水溶液为Ag掺杂源生长了Ag掺杂ZnO(ZnO:Ag)薄膜.研究了衬底温度对所得ZnO:Ag薄膜的晶体结构、电学和光学性质的影响规律.所得ZnO:Ag薄膜结构良好,在室温光致发光谱中检测到很强的近带边紫外发光峰,透射光谱中观测到非常陡峭的紫外吸收截止边和较高的可见光区透过率,表明薄膜具有较高的晶体质量与较好的光学特性.霍尔效应测试表明,在500℃下获得了p型导电的ZnO:Ag薄膜,载流子浓度为5.30×1015cm关键词: ZnO:Ag薄膜 p型掺杂 超声喷雾热分解 霍尔效应  相似文献   

9.
ZnO:N thin films were deposited on sapphire substrate by metal organic chemical vapor deposition with NH3 as N-doping sources. The reproducible p-type ZnO:N film with hole concentration of ∼1017 cm−3 was successfully achieved by subsequent in situ thermal annealing in N2O plasma protective ambient, while only weak p-type ZnO:N film with remarkably lower hole concentration of ∼1015 cm−3 was obtained by annealing in O2 ambient. To understand the mechanism of the p-type doping behavior of ZnO:N film, X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption near-edge spectroscopy (XANES) measurements have been applied to investigate the local electronic structure and chemical states of nitrogen atoms in ZnO:N films.  相似文献   

10.
Hydrogenated amorphous silicon thin films (a-Si:H) have been prepared by the rf glow discharge technique. The configuration of bonded hydrogen was investigated by infrared absorption measurements of Si:H vibrational modes before and after bombardment with an α-particle beam energy of 125 keV/n. The results showed an increase in the absorption mode near 2100, 890 and 850 cm?1 and a decrease in the absorption mode near 2000 cm?1 after bombardment. These observations are interpreted in terms of changes of the oscillator strengths of vibrational modes.  相似文献   

11.
ZnO thin films were treated by high-pressure hydrogen (H2). Scanning electron microscope (SEM) images show that the surface morphology of ZnO films has been changed significantly by H2 treatment. X-ray diffraction patterns show that the Zn(OH)2 phases formed after H2 treatment. The X-ray photoelectron spectroscopy results indicate that H atoms were doped into the surface of ZnO by forming H-O-Zn bond. The phenomenon shows that it is easy to form O-H bond in ZnO rather than H interstitial atom under high-pressure hydrogen circumstance.  相似文献   

12.
This paper describes the effect of doping on the composition, surface morphology and optical, structural and electrical properties of Al doped ZnO thin films by pulsed laser deposition. SEM analysis shows that the crystalline nature of the deposited films decreases with an increase of Al doping concentration from 1% to 6%. In the AFM analysis, the surface roughness of the deposited films increases by increasing the doping concentration of Al. Al doping strongly influences the optical properties of the ZnO thin films. Optical transmittance spectra show a very good transmittance in the visible region (450–700 nm). The calculated optical band gap was found to be in the range from 3.405 to 3.464 eV. Structural analysis confirms that the increases of Al concentration decrease the crystallinity of the ZnO films and the particle size decreases from 45.7±0.09 to 28.0±0.02 nm. In the Raman analysis, the active mode of Al(=1%) doped ZnO films were observed at 434.81 cm−1. The shifts of the active mode (E2)(E2) show the presence of tensile stress in the deposited films. The electrical properties of the deposited films showed that the values of the Hall mobility was in the range between 2.51 and 10.64 cm2/V s and the carrier concentration between 15.7 and 0.78×1017 and the resistivity values between 1.59 and 10.97 Ωcm, depending on the doping concentration.  相似文献   

13.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

14.
K. Hari Krishna  O. M. Hussain 《Ionics》2013,19(10):1359-1365
The vanadium pentoxide (V2O5) thin films have been deposited using home built activated reactive evaporation technique on indium tin oxide-coated flexible Kapton substrates and investigated their microstructural and electrochemical properties. X-ray diffraction pattern displayed predominant (001) orientation designating the orthorhombic structure of the films deposited at optimised growth conditions. The surface of the films is observed to be composed of vertical elliptical-shaped grains of size 98 nm distributed uniformly over the surface of the films provided with root mean square surface roughness of 9 nm as evidenced from atomic force microscopy studies. As-deposited V2O5 thin films demonstrated constant discharge capacity of about 60 μAh/(cm2 ?μm) for 10 cycles at room temperature in the potential window of 4.0–2.5 V. The influence of silver (Ag) interlayer on electrochemical properties of V2O5 films was investigated and observed appreciable improvement in electrochemical performance of ‘V2O5/Ag/V2O5’ films. The multilayered V2O5/Ag/V2O5 films exhibited a discharge capacity of about 75 μAh/(cm2 ?μm) provided with enhanced cycliability.  相似文献   

15.
《Composite Interfaces》2013,20(8):623-634
An attempt has been made to fabricate p-ZnO thin films from the ZrN mixed ZnO targets by RF magnetron sputtering. The targets of different ZrN concentrations (0, 1, 2, and 4?mol%) have been prepared by solid-state reaction route. The ZrN-codoped ZnO films grown on semi-insulating Si (100) substrates have been characterized by X-ray diffraction (XRD), photoluminescence (PL), Hall effect measurement, time-of-flight secondary ion mass spectrometer (ToF-SIMS), and atomic force microscopy (AFM). XRD studies reveal that all films are oriented along (002) plane. The Hall measurements showed p-conductivity for 1 and 2?mol% ZrN-codoped ZnO films. Further, it has been found that 1?mol% ZrN-codoped film has low resistivity (7.5?×?10?2?Ω?cm) and considerable hole concentration (8.2?×?1018?cm?3) by optimum incorporation of nitrogen due to best codoping. The red shift in near-band-edge emission observed from PL well acknowledged the p-conduction in 1 and 2?mol% ZrN-codoped ZnO film. The incorporation of N and Zr atoms in the ZnO matrix has been confirmed by ToF-SIMS analysis. The increase in peak to valley roughness (R pv) with increase of doping concentration has been observed from AFM analysis. ZnO homojunction has also been fabricated with the best codoped p-ZnO film and it showed typical rectification behavior of a diode. The junction parameters have also been determined for the fabricated homojunction.  相似文献   

16.
Hf–Sn–Zn–O (HTZO) thin films were prepared on SiO2/SiNx substrates at room temperature by the direct current (DC) magnetron sputtering of Hf-doped Sn–Zn–O targets. The characteristics of films with different amounts of Hf were analyzed. Amorphous HTZO films were obtained by increasing the Hf content, while polycrystalline films have not shown with Hf doping. With the proper Hf concentration in the HTZO films (∼2.0 atomic % Hf/(Hf + Sn + Zn + O)), HTZO films demonstrated good performance as an oxide semiconductor channel material in thin film transistors (TFTs) with a field effect mobility (μFE) of 10.9 cm2V−1 s−1, an on/off current ratio of 109, and a subthreshold voltage swing of 0.71 V/decade.  相似文献   

17.
Because of having similarities in many physical as well as chemical properties to those of Zn, Cu has been strategically used as an effective dopant e.g., Al, Ga, F, etc., to change the optical, electrical and the micro-structural properties of ZnO thin films for obtaining its favorable opto-electronic performance as a transparent conducting oxide suitable for devices. Present study demonstrates the growth of transparent conducting ZnO:Ga:Cu thin films, by low power RF magnetron sputtering at a low substrate temperature (100 °C). Highly crystalline ZnO:Ga:Cu film with preferred c-axis orientation has been obtained demonstrating a high magnitude of transmission ~85% in the visible range and a high electrical conductivity ~40 S cm–1, facilitated by large crystallite size (~29 nm), introducing reduced grain boundary scattering. XPS O 1S spectrum reveals the presence of a significant fraction of oxygen atoms effectively increasing the optical transparency. Incorporation of Ga and Cu ions into the ZnO matrix promotes violation of the local translational symmetry as suggested by the relaxation of Raman selection rules for the network, evident by the presence of strong (B1highB1low) modes which are typically Raman inactive. The consequences of Cu doping has been compared with identically prepared ZnO and ZnO:Ga films.  相似文献   

18.
Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition   总被引:1,自引:0,他引:1  
p-Type ZnO thin films have been realized via monodoping antimony (Sb) acceptor by using pulsed laser deposition. The obtained films with the best electrical properties show a hole concentration in the order of 1018 cm−3 and resistivity in the range of 2-4 Ω cm. X-ray diffraction measurements revealed that all the films possessed a good crystallinity with (0 0 2)-preferred orientation. Guided by X-ray photoemission spectroscopy analysis and a model for large-sized-mismatched group-V dopant in ZnO, an SbZn-2VZn complex is believed to be the most possible acceptor in the Sb-doped p-type ZnO thin films.  相似文献   

19.
The preferred (002) orientation zinc oxide (ZnO) nanocrystalline thin films have been deposited on FTO-coated glass substrates by sol–gel spin-coating technology and rapid thermal annealing for use in dye-sensitized solar cells (DSSC). The effects of preannealing temperature (100 and 300°C) on the microstructure, morphology and optical properties of ZnO thin films were studied. The ZnO thin films were characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM) and Brunauer–Emmett–Teller (BET) analysis. The photoelectric performance of DSSC was studied by IV curve and the incident photon-to-current conversion efficiency (IPCE), respectively. From the results, the intensities of (002) peaks of ZnO thin films increases with increasing preannealing temperature from 100°C to 300°C. The increase in pore size and surface area of ZnO films crystallized at the increased preannealing temperature contributed to the improvement on the absorption of N3 dye onto the films, the short-circuit photocurrent (J sc) and open-circuit voltage (V oc) of DSSC. The higher efficiency (η) of 2.5% with J sc and V oc of 8.2 mA/cm2 and 0.64 V, respectively, was obtained by the ZnO film preannealed at 300°C.  相似文献   

20.
The carrier transport property of polycrystalline silicon (poly-Si:H:F) thin films was studied in relation to film microstructure, impurity, in situ or post-annealing treatments to obtain better carrier transport properties. Poly-Si:H:F films were prepared from SiF4 and H2 gas mixtures at temperatures <300 °C. Dark conductivity of the films prepared at high SiF4/H2 gas flow ratio (e.g., 60/3 sccm) exhibits a high value for intrinsic silicon and its Fermi level is located near the conduction band edge. The carrier incorporation is suppressed well, either by in situ hydrogen plasma treatment or by post-annealing with high-pressure hot-H2O vapor. It is confirmed that weak-bonded hydrogen atoms are removed by the hot-H2O vapor annealing. In addition, evident correlation between impurity concentrations and dark conductivity is not found for these films. It is thought that the carrier incorporation in the films prepared at high SiF4/H2 gas flow ratios is related to grain-boundary defects such as weak-bonded hydrogen. By applying hot-H2O vapor annealing at 310 °C to a 1-μm-thick p-doped (400)-oriented poly-Si:H:F film, Hall mobility was improved from 10 cm2/Vs to 17 cm2/Vs. Received: 7 August 2000 / Accepted: 2 March 2001 / Published online: 20 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号