首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 115 毫秒
1.
许多生物分子的振动及转动能级都在太赫兹波段,因此太赫兹时域光谱技术可以用来探测生物分子。并且由于太赫兹波的光子能量较低,仅为毫电子伏量级,在探测过程中不会破坏生物样品,所以太赫兹时域光谱技术在未来生化检测等研究领域具有非常广泛的应用前景。研究表明,大多数生物分子需要在液体环境中才能充分发挥其生物活性,然而水溶液中的氢键在太赫兹波段会产生强烈的吸收。另外,水分子是极性分子,太赫兹波对极性分子也有很强的共振吸收,这使得利用太赫兹时域光谱技术检测液体环境中的活性生物分子非常困难。因此,许多研究团队将太赫兹时域光谱技术与微流控技术相结合,以减少各种因素对生物分子检测的影响。微流控技术是通过减小微流控芯片中液体池的深度来减少液体样品与太赫兹波的作用距离,从而减少水溶液对太赫兹波的吸收。使用对太赫兹波的透过率高达95%的环烯烃共聚物(COC:Zeonor 1420R)为材料制作了双层微流控芯片,该微流控芯片内部液体池的长度和宽度均为4 cm,深度为50μm。此外,由于在电解质溶液中存在大量自由移动的阴阳离子,所以为了探究电解质溶液中自由移动的阴阳离子对太赫兹透射特性的影响,使用外加电场装置对注入液...  相似文献   

2.
很多生物大分子的特征振动模式和转动模式都位于太赫兹波段范围内,且太赫兹波的低电子能特性使其在实验过程中不会对待测样品造成破坏,所以可以采用太赫兹技术来鉴别生物样品。在许多研究中,生物样品都是溶液状态,溶液中水和其他分子之间的相互作用涉及很多生物现象,所以研究水的太赫兹特性就显得至关重要。众所周知,水分子是十分常见的极性分子,分子间氢键会与太赫兹波发生强烈的相互作用,从而使得水对太赫兹波有很强的吸收作用,导致利用太赫兹技术研究水溶液中生物样品的动态特性变得相当困难。为了解决这一难题,可以引入微流控技术。微流控技术以能精确操控微尺度流体而著称,其沟道深度可以达到50μm甚至更小。由于微流控技术减小了太赫兹波在流体中的传播距离,从而极大地减小了水对太赫兹波的吸收。本研究采用对太赫兹波具有高透过率的Zeonor 1420R材料制成了夹心式微流控芯片,芯片上微沟道的长度、宽度和深度分别为3 cm,4 mm和50 μm,太赫兹探测区的直径为3 mm。在制作微流控芯片时,利用厚度为50μm的强黏性双面胶代替传统夹心式微流控芯片中的聚二甲基硅氧烷(PDMS)薄膜,使微流控芯片在加热过程中不再有漏液现象。另外,设计了一个温控系统,它由加热片、温度传感器和温控仪构成,该温控系统能够以0.1 ℃的精度控制温度。利用该系统对微流控芯片中的去离子水进行加热,从20~90 ℃每隔5 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度升高,水的太赫兹透过率不断减小,说明水对太赫兹波的吸收随着温度的升高而变大。此结果为未来在不同环境温度下利用微流控技术研究液态样品的太赫兹吸收特性提供了先决条件,为未来太赫兹的应用与发展提供技术支持。  相似文献   

3.
许多生物大分子的振动和转动能级都落在THz波段范围内,因此可以采用THz光谱技术定性地鉴别生物样品。但是大部分生物分子的活性需在液体环境中才能表现出来,而水作为极性物质对THz波具有较强的吸收特性。因此,在THz光谱技术中通常采取各种措施来减少水的影响,以防止水溶液中生物样品的信息被掩盖。该研究设计了两种可利用透射式太赫兹时域光谱(THz-TDS)系统检测的夹心式微流控芯片,通过减小THz与水的作用距离来减少水对THz的吸收,从而达到高透过率的目的。微流控芯片采用环烯烃共聚物(Zeonor 1420R)作为基片和盖片,聚二甲基硅氧烷(PDMS)作为沟道夹层,利用THz-TDS系统对该芯片进行了测试,测得该芯片在0.2~2.6 THz频率范围内的透过率可以达到80%以上。在微流控芯片中分别加入去离子水、1,2-丙二醇以及二者在不同体积比下的混合溶液,并测量了它们的透射谱。结果表明,不同比例溶液的THz光谱明显不同,说明该芯片在测量液态样品方面的可行性。此外,用该芯片分别研究了不同浓度的氯化钾和碘化钾溶液,发现氯化钾溶液随着浓度的增加THz透过率减弱,而碘化钾溶液则相反。初步认为,电解质改变了水溶液中的氢键密度,从而导致溶液对THz吸收的改变。  相似文献   

4.
许多生物大分子的振动和转动能级都在太赫兹波段,且太赫兹波具有光子能量低,峰值功率高的特点,因此用太赫兹技术进行检测,能够从很大程度上保证生物分子不被破坏。然而,大部分的生物分子只有在水溶液中才能保持其生物活性,且水是极性分子,对太赫兹波有强烈的吸收,因此使用常规的太赫兹技术检测水溶液中生物样品的特性存在一定困难。设计了一种具有夹层结构的太赫兹微流控芯片,包含基片、盖片和微通道层,基片和盖片用环烯烃共聚物(COC)和有机玻璃(PMMA)作为材料。COC材料对太赫兹波具有高透性,并且对可见光透明,是制作太赫兹微流控芯片的理想材料,但是价格昂贵且不易获得。为了减少COC的用量,将COC嵌入到基片和盖片的PMMA中,保证太赫兹波能从COC中穿过。COC的直径为5 mm,厚度与PMMA材料一致,都为2 mm,与微通道中心对准。选用厚度为50 μm的强粘性双面胶作为微通道层,将双面胶的中心进行镂空处理作为微通道,其长为3 cm,宽为4 mm。基片、盖片和微通道层紧密粘合在一起构成太赫兹微流控芯片,太赫兹探测区直径为4 mm。将微流控技术与太赫兹技术相结合,减少了样品的消耗量,缩短了太赫兹波与样品的作用距离,为液态样品的检测提供了可能。研究发现,水对太赫兹波的强烈吸收主要是由于水中氢键引起的,而电解质溶液会对水溶液中的氢键产生影响。以电解质溶液为研究对象,分别配置了不同浓度的KCl,K2SO4,CuCl2和CuSO4溶液,利用太赫兹微流控技术研究了它们的太赫兹透射谱。结果表明:四种电解质溶液的太赫兹透射强度都低于纯去离子水的透射强度,但实验现象也有差别,CuCl2溶液随浓度增加,太赫兹透射强度增加,而KCl,K2SO4和CuSO4溶液则随着浓度的增加,太赫兹透射强度减小。  相似文献   

5.
太赫兹(THz)波在物质检测方面发挥着巨大的作用,是一种非常有潜力的生化传感工具。但是传统的太赫兹时域光谱系统(TDS)结构复杂,系统的集成度低,占用空间较大。所以,如何对THz波进行有效引导、实现集成化传输并得到高质量光谱就成为太赫兹光谱系统的研究热点。太赫兹片上系统是将THz的产生、传输以及探测都集成到同一芯片上,然后通过相干探测的方法获得THz时域光谱。它可以实现对多种样品的检测,尤其在对难于取样的微量样品探测方面具有广泛的应用价值。它无需光路准直,操作简便,成品率高。两个研究工作都是基于低温砷化镓(LT-GaAs)外延片开展的。首先将一根直径为200 μm的铜线固定在LT-GaAs外延片的上方,通过真空蒸镀的方法制备出天线电极,同时得到天线间隙,研制出基于LT-GaAs外延片的THz天线。利用波长为800 nm的飞秒激光对其进行测试,得到了质量较高的THz信号,验证了天线的实用性。然后在另一外延片上利用光刻微加工工艺制作出传输线和微电极,得到了集成的THz片上系统。使用波长为1 550 nm的飞秒激光分别激发片上系统的太赫兹产生天线和探测天线,天线产生的太赫兹波在传输线上传播,在探测端同样得到了质量较高的THz时域信号,证实了THz片上系统的可行性。该方法省去了腐蚀牺牲层以及LT-GaAs薄膜的转移、键合等步骤,极大地提高了片上系统的成品率,避免了薄膜转移过程中易破碎及腐蚀液存在毒性的问题。最后,研究了外加电压对从片上系统中获得的THz波性能的影响,结果为电压越高,THz波的信号强度越强;另外,通过在传输线上方垂直放置铜箔的方法验证了THz波沿着传输线传播的事实。该研究中采用的基于LT-GaAs外延片的片上系统的制备方法简单,制作周期短,制作过程安全,应用领域广泛,这为将来与微流控芯片相结合实现对液体样品的探测打下了基础。  相似文献   

6.
由于许多生物分子的振动和转动能级均在太赫兹波段,且太赫兹波具有电子能量低(约4 meV),不会破坏待测样品的特性,因此可以采用太赫兹光谱技术检测生物样品。然而许多生物分子在液体环境中才能保持其生物活性,需要在盐溶液中来探究酸碱环境对其的影响,以及在盐类缓冲液中研究其生物特性。但水作为极性液体对太赫兹波有强烈的吸收,因此,探究如何减少水对太赫兹吸收的方法非常必要。水对太赫兹的吸收主要因水分子间氢键造成,现阶段最常见的方法是减少水与太赫兹波的作用距离以及破坏水分子间的氢键。利用夹心式微流控芯片在太赫兹时域光谱系统下通过观察光谱强度变化来探究电解质对水分子间氢键的影响,既减少了水和太赫兹波的作用距离,又探究了电解质对水分子间氢键的作用。在微流控芯片中分别加入不同种类以及不同浓度的电解质,通过观察其在0.1~1.0 THz范围内的光谱强度变化来分析不同电解质对水分子间氢键的影响。部分电解质促进氢键的缔合,而另一部分则破坏氢键的形成,在太赫兹光谱范围内表现为光谱强度的变化。若促进氢键的缔合则对太赫兹吸收变大,光谱强度减弱;若破坏氢键的缔合则对太赫兹吸收减弱,光谱强度增加。研究结果发现:在水中加入KCl和KBr时,太赫兹光谱强度增加,表明二者对氢键有破坏作用,使得光谱强度变大;然而当加入MgCl2和CaCl2时,太赫兹光谱强度减弱,表明二者对氢键有缔合作用,从而使光谱强度变小。利用太赫兹技术在0.1~1.0 THz范围内研究KCl,KBr,MgCl2和CaCl2这四种不同浓度的电解质溶液特性,发现它们只会对光谱强度造成一定影响,不会引入新的特征吸收峰以及对待测样品造成干扰。这对于研究诸如大肠杆菌、枯草芽孢杆菌等在0.1~1.0 THz范围内有特征吸收谱的生物分子具有一定的实用价值。在溶液中加入所需的电解质并借助微流控芯片不仅可以识别待测样品、研究待测样品的光谱信息、探究其生物特性,而且为进一步推动太赫兹技术在生化方面的应用研究提供了先决条件。  相似文献   

7.
太赫兹生物医学是目前光谱研究领域的热点,其主要难点在于如何有效避免水分的干扰,进行液相环境下样本的灵敏分析与检测。超材料太赫兹传感器由于具有高灵敏、快速检测、痕量分析等优势,而成为太赫兹生物医学传感领域的重要研究方法。设计加工了一种基于单开口谐振环超材料的太赫兹液相传感芯片,为了有效克服水对太赫兹波的强烈吸收,利用微纳加工技术刻蚀深度为50 μm的流体通道。传感芯片整合了超材料基底与PDMS流道,在THz频段有两个位于0.771和2.129 THz的谐振峰。以水、无水乙醇作为常见化学溶剂进行传感实验,相对于空白传感器本身的THz时域谱而言,液体的加入导致时域峰的相位延迟和幅度减小。同时,由于水的折射率大于乙醇,THz透射频谱结果显示为水的频移改变量大于乙醇,且峰2大于等于峰1。上述结果表明,构建的超材料液相传感芯片是一个灵敏的折射率传感器,也证明了该传感器在测量液态样品方面的可行性。此外,利用该芯片研究了不同浓度的PBS溶液,发现水溶液中加入离子会导致谐振频率红移(以水为参考),随着离子浓度增加,谐振频率改变量依次增加,10X PBS红移量最大,峰1为22.9 GHz,峰2为30.5 GHz。比较两个谐振峰的传感性能,峰2的传感能力更好,但是峰1对低浓度的离子溶液更加敏感。因此,构建的微流体传感器及检测体系作为一个灵敏的折射率传感器,可开发一个灵敏的无标记THz传感平台,为太赫兹生物医学研究提供新思路。  相似文献   

8.
太赫兹波的光子能量只有毫电子伏特,远低于各种化学键的键能,因此不会和生物组织发生有害的电离反应;另一方面,由于大部分生物分子转动和振动所具有的特征能量都在太赫兹范围内,所以利用太赫兹波可以对生物分子进行识别。水是生物环境中最重要的液体,生物分子与液态水之间的相互作用决定了其生物活性,因此研究液态水的太赫兹特性就显得十分重要。水作为极性液体,其中的偶极分子-偶极分子间的相互作用和极性分子间的氢键会对太赫兹波产生较大的吸收作用,这就使利用太赫兹技术研究液体环境下的生物分子动力学特性变得相当困难。微流控技术通过改变微流控芯片中液体通道的深度来控制液体样品的厚度,以减少太赫兹波与液体样品的作用距离,从而使水对太赫兹波的吸收大幅减小。利用对太赫兹波的透过率高达95%的Zeonor 1420R材料和双面胶制作了可重复性使用的夹心式微流控芯片,芯片上液体通道的长度、宽度、深度分别为2 cm,5 mm和50 μm。另外,设计制作了一个制冷系统,由制冷片、散热模块、温度传感器、保温箱和温度控制器构成,该制冷系统可以对保温箱的内部环境制冷并在一定程度上保持恒温。在实验过程中,将注满水的微流控芯片置于保温箱中,利用制冷系统对微流控芯片中的水进行制冷处理,从8~-3 ℃每隔1 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度降低,水的太赫兹透过率不断增大,说明水对太赫兹波的吸收随着温度的降低而降低。此结果为将来在不同低温环境下利用微流控技术研究液体样品的太赫兹吸收特性打下了基础,为太赫兹在生物领域的应用与发展提供了技术支持。  相似文献   

9.
王玥  贺训军  吴昱明  吴群  梅金硕  李龙威  杨福杏  赵拓  李乐伟 《物理学报》2011,60(10):107301-107301
在获得太赫兹波段碳纳米管薄膜的介电特性基础上,利用数值THz时域光谱技术研究了碳纳米管薄膜栅周期结构的表面等离子激元的传播特性和局域化现象. 研究结果表明,在栅周期为168 μm时,频率在0.5-2.5 THz之间出现两个等离子模式的共振峰值,分别位于0.99 THz和1.95 THz,这与理论计算结果相符合. 数值计算的表面等离子激元传播距离与理论预测值相一致,达到了146 μm. 此外,分析了栅厚度与栅宽度变化对表面等离子波特性的影响. 关键词: 太赫兹 碳纳米管 表面等离子波  相似文献   

10.
研究了太赫兹成像技术在爆炸物探测中的应用,分析了太赫兹透射型时域光谱系统的实验装置,介绍了太赫兹时域光谱的测量步骤。确定了四种爆炸物样品(TNT,RDX,DNT,HMX)在太赫兹波段的吸收谱。结果表明,这四种爆炸物样品在0~2.5THz的频率范围内均存在特征吸收峰,这为太赫兹技术检测爆炸物提供了一种有效的途径。  相似文献   

11.
许多生物分子自身的转动、振动或分子团的整体振动模式都位于太赫兹波段内,因此可以利用太赫兹光谱技术对生物分子进行检测。同时又由于太赫兹波的光子能量仅为毫电子伏量级,不会对分子的内部结构造成破坏,所以太赫兹时域光谱技术在生物检测方面具有良好的应用前景。众所周知,绝大多数的生物分子只有在液体条件下才能发挥其生物活性,所以研究液体环境下生物分子之间的相互作用就非常必要。然而水分子的转动模式、振动模式以及和氢键有关的能量均处于太赫兹波段,从而对其产生强烈的吸收;另外,水分子为极性分子,而极性分子对太赫兹波有强烈的共振吸收,这就使利用太赫兹技术对生物分子活性进行动态表征产生了困难。因此在研究溶液中的生物分子与太赫兹波的相互作用时,最大限度地减小水分子对太赫兹波的吸收就成为近年来的研究热点。目前,减少水对太赫兹波吸收的主要方法有:在溶液样品中加入抑制氢键缔合的离子来减小水对太赫兹的吸收;通过改变溶液的温度来调节水对太赫兹的吸收;利用微流控芯片技术,通过减小被测样品与太赫兹波的作用距离来减小水对太赫兹波的吸收。另外,激光的激励、电场或磁场的处理,也能改变水对太赫兹波的吸收,将盛有去离子水的微流控芯片放于电场中,研究经电场处理不同时间的去离子水对太赫兹吸收强度的影响。结果发现,太赫兹波的透射强度随着去离子水在电场当中静置时间的增加而增强,当在电场中静置60 min时,太赫兹的频谱强度达到最大,与空气的频谱强度接近。由此可以推断外加电场使水分子的偶极矩发生了变化,从而对整体水分子的振动和转动产生了影响,并且改变了水中的氢键结构,导致了太赫兹透射光谱强度的增强。  相似文献   

12.
GaAs has been widely used to fabricate a variety of optoelectronic devices by virtue of its superior performance,and it is very important to accurately measure its electrical and optical properties.In this study,a semiinsulation(SI) GaAs wafer is investigated by the terahertz(THz) non-destructive testing technology.Using an air biased coherent generation and detection THz time domain spectroscopy system,the THz time domain waveform and spectrum of SI-GaAs are obtained by the time domain spectroscopy module,and its opticalelectrical characteristics including complex refractive index,permittivity and dielectric loss angle are calculated.Its carrier lifetime is measured by the optical-pump THz-probe module,and the THz pulse induced intervalley scattering in photo-excited SI-GaAs is discussed.  相似文献   

13.
Petrochemicals, one of the most important energy sources, contribute to the remarkable development of human civilization. Therefore, the development of a kind of fast, safe, reliable and nondestructive detection technology is essential. Terahertz (THz) spectroscopy, containing abundant physical, chemical, and structural information of materials, shows significant applications in the fields of physics, chemistry, materials science, medicine, pharmacy and biology. As a promising detection technology, THz technology provides a new reliable analytic method in liquid petrochemicals detection due to the fact that low-frequency vibrational and rotational motions of hydrocarbon molecules lie in the terahertz region. In this article, we review the applications of the liquid petrochemicals detection based on the terahertz time-domain spectroscopy (THz-TDS) system, mainly containing the analysis of molecular properties, qualitative identification, quantitative analysis and the terahertz metamaterials sensing. In addition, we propose the further exploration of terahertz technology in the field of petrochemical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号