首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
许多生物分子自身的转动、振动或分子团的整体振动模式都位于太赫兹波段内,因此可以利用太赫兹光谱技术对生物分子进行检测。同时又由于太赫兹波的光子能量仅为毫电子伏量级,不会对分子的内部结构造成破坏,所以太赫兹时域光谱技术在生物检测方面具有良好的应用前景。众所周知,绝大多数的生物分子只有在液体条件下才能发挥其生物活性,所以研究液体环境下生物分子之间的相互作用就非常必要。然而水分子的转动模式、振动模式以及和氢键有关的能量均处于太赫兹波段,从而对其产生强烈的吸收;另外,水分子为极性分子,而极性分子对太赫兹波有强烈的共振吸收,这就使利用太赫兹技术对生物分子活性进行动态表征产生了困难。因此在研究溶液中的生物分子与太赫兹波的相互作用时,最大限度地减小水分子对太赫兹波的吸收就成为近年来的研究热点。目前,减少水对太赫兹波吸收的主要方法有:在溶液样品中加入抑制氢键缔合的离子来减小水对太赫兹的吸收;通过改变溶液的温度来调节水对太赫兹的吸收;利用微流控芯片技术,通过减小被测样品与太赫兹波的作用距离来减小水对太赫兹波的吸收。另外,激光的激励、电场或磁场的处理,也能改变水对太赫兹波的吸收,将盛有去离子水的微流控芯片放于电场中,研究经电场处理不同时间的去离子水对太赫兹吸收强度的影响。结果发现,太赫兹波的透射强度随着去离子水在电场当中静置时间的增加而增强,当在电场中静置60 min时,太赫兹的频谱强度达到最大,与空气的频谱强度接近。由此可以推断外加电场使水分子的偶极矩发生了变化,从而对整体水分子的振动和转动产生了影响,并且改变了水中的氢键结构,导致了太赫兹透射光谱强度的增强。  相似文献   

2.
许多生物分子的振动及转动能级都在太赫兹波段,因此太赫兹时域光谱技术可以用来探测生物分子。并且由于太赫兹波的光子能量较低,仅为毫电子伏量级,在探测过程中不会破坏生物样品,所以太赫兹时域光谱技术在未来生化检测等研究领域具有非常广泛的应用前景。研究表明,大多数生物分子需要在液体环境中才能充分发挥其生物活性,然而水溶液中的氢键在太赫兹波段会产生强烈的吸收。另外,水分子是极性分子,太赫兹波对极性分子也有很强的共振吸收,这使得利用太赫兹时域光谱技术检测液体环境中的活性生物分子非常困难。因此,许多研究团队将太赫兹时域光谱技术与微流控技术相结合,以减少各种因素对生物分子检测的影响。微流控技术是通过减小微流控芯片中液体池的深度来减少液体样品与太赫兹波的作用距离,从而减少水溶液对太赫兹波的吸收。使用对太赫兹波的透过率高达95%的环烯烃共聚物(COC:Zeonor 1420R)为材料制作了双层微流控芯片,该微流控芯片内部液体池的长度和宽度均为4 cm,深度为50μm。此外,由于在电解质溶液中存在大量自由移动的阴阳离子,所以为了探究电解质溶液中自由移动的阴阳离子对太赫兹透射特性的影响,使用外加电场装置对注入液...  相似文献   

3.
太赫兹是指频率从0.1到2.0 THz之间的远红外波。与傅里叶红外相比,太赫兹时域光谱能量低,信躁比高,并且无辐射损伤。氨基酸分子的低频振动模式(扭转,集体振动模式和氢键)处在 THz波段。氨基酸是一类重要的生物分子,是组成蛋白质最基本的物质。氨基酸分子以分子间氢键相互连接构成晶体。氨基酸在THz波段比在红外波段体现更多独特吸收特征。到目前为止,已经获得了20种氨基酸分子的太赫兹吸收谱,包括利用太赫兹技术对部分氨基酸的定量分析。氨基酸的太赫兹光谱研究,有利于深层次理解蛋白质/ DNA的低频振动模式及相关生物反应和活性。文章综述了20种氨基酸分子的太赫兹吸收光谱并建立了吸收光谱数据库。总结了太赫兹技术在氨基酸应用方面存在的问题,并对未来发展方向进行展望。  相似文献   

4.
许多生物大分子的振动和转动能级都在太赫兹波段,且太赫兹波具有光子能量低,峰值功率高的特点,因此用太赫兹技术进行检测,能够从很大程度上保证生物分子不被破坏。然而,大部分的生物分子只有在水溶液中才能保持其生物活性,且水是极性分子,对太赫兹波有强烈的吸收,因此使用常规的太赫兹技术检测水溶液中生物样品的特性存在一定困难。设计了一种具有夹层结构的太赫兹微流控芯片,包含基片、盖片和微通道层,基片和盖片用环烯烃共聚物(COC)和有机玻璃(PMMA)作为材料。COC材料对太赫兹波具有高透性,并且对可见光透明,是制作太赫兹微流控芯片的理想材料,但是价格昂贵且不易获得。为了减少COC的用量,将COC嵌入到基片和盖片的PMMA中,保证太赫兹波能从COC中穿过。COC的直径为5 mm,厚度与PMMA材料一致,都为2 mm,与微通道中心对准。选用厚度为50 μm的强粘性双面胶作为微通道层,将双面胶的中心进行镂空处理作为微通道,其长为3 cm,宽为4 mm。基片、盖片和微通道层紧密粘合在一起构成太赫兹微流控芯片,太赫兹探测区直径为4 mm。将微流控技术与太赫兹技术相结合,减少了样品的消耗量,缩短了太赫兹波与样品的作用距离,为液态样品的检测提供了可能。研究发现,水对太赫兹波的强烈吸收主要是由于水中氢键引起的,而电解质溶液会对水溶液中的氢键产生影响。以电解质溶液为研究对象,分别配置了不同浓度的KCl,K2SO4,CuCl2和CuSO4溶液,利用太赫兹微流控技术研究了它们的太赫兹透射谱。结果表明:四种电解质溶液的太赫兹透射强度都低于纯去离子水的透射强度,但实验现象也有差别,CuCl2溶液随浓度增加,太赫兹透射强度增加,而KCl,K2SO4和CuSO4溶液则随着浓度的增加,太赫兹透射强度减小。  相似文献   

5.
DNA碱基分子胞嘧啶和胸腺嘧啶的太赫兹光谱研究   总被引:1,自引:0,他引:1  
利用太赫兹时域光谱技术获得了DNA碱基分子胞嘧啶和胸腺嘧啶在0.1―3.5 THz的特征吸收谱,发现胞嘧啶在2.53 THz的特征吸收细节信息。采用考虑了周期性边界条件的赝势平面波密度泛函方法对胞嘧啶分子晶体进行了结构优化和晶格动力学计算,模拟重现其太赫兹特征吸收光谱,并成功辨识了胞嘧啶在0.1―3.5 THz的所有特征吸收峰。研究结果表明,这些重要的生物分子在太赫兹频段表现出鲜明的光谱特性,胞嘧啶分子3.5 THz以下的吸收特性均来源于由分子间氢键支配的外振动模式。  相似文献   

6.
太赫兹(THz)波是指频率在0.1~10 THz频段的电磁波。太赫兹光谱技术不同于以往的检测手段,可以用于检测氨基酸同分异构体,反映物质的分子结构和构型,对食品安全和药品药性控制有着重要的意义。亮氨酸与异亮氨酸属于同系的同分异构体,它们具有近似的分子结构,但物理化学性质有很大的差别。生物大分子的太赫兹吸收与其分子间氢键和分子内氢键的振动和转动能级相关的偶极跃迁有关,可以利用分子偶极跃迁进行生物分子的指纹识别。采用太赫兹时域光谱(THz-TDS)和傅里叶红外光谱(FTIR),对亮氨酸和异亮氨酸进行了测量。在中红外波段亮氨酸与异亮氨酸的吸收光谱几乎完全重叠,而在太赫兹频波段可以观察到它们的光谱存在明显差异,因此太赫兹光谱能够作为快速准确鉴别这两种物质的方法。采用密度泛函理论(DFT)对亮氨酸和异亮氨酸的低频集体振动模式进行理论模拟,并对其太赫兹光谱进行研究和讨论。通过比较实验和理论结果,计算得到的峰位与实验结果可以互相印证。  相似文献   

7.
与红外、紫外和拉曼光谱相比,太赫兹光谱能量低,在待测物质中不会出现有害光致电离现象,伴随太赫兹技术的不断成熟,太赫兹波已经成为常用的无损检测用波。很多生物大分子在高频光波探测下具有指纹性,太赫兹时域光谱技术是对生物大分子无损检测的最佳手段。同时,不同生物分子在太赫兹吸收谱中呈现出各不相同的吸收峰,获得待测物质的太赫兹吸收谱后,与标准谱进行对照可以为待测物质做出定性辨识。在此基础上,结合最小二乘法、支持向量机等数据处理技术还可以实现基于太赫兹时域光谱对待测物质的定量分析。量子化学分析方法应用了量子力学的基本原理和方法,其中电子分析理论从电子角度出发,在分析大分子或原子个数众多的体系时近似误差较小,并且密度泛函理论不依赖实验数据和先验知识的支撑。通过量子化学计算方法计算氨基酸分子的太赫兹吸收谱,可以为氨基酸分子的太赫兹吸收峰匹配分子振动模式,对氨基酸定性分析有一定的参考性,并为实验获取的样品太赫兹时域光谱提供理论支撑,在实验获得太赫兹吸收谱的基础上进行量子化学计算,能验证实验结果的准确性。首先利用太赫兹时域光谱系统获取进口苏氨酸样品的太赫兹吸收谱,其次分别构建苏氨酸样品在实物中以两性离子形式存在的单分子、二聚体和晶胞三种构型,并利用量子化学计算方法完成了每种构型的结构优化,最后计算三种苏氨酸分子构型的太赫兹吸收谱。结果表明,单分子构型和二聚体构型的太赫兹计算谱与实验谱差异较大,但在高频段计算谱与实验谱的吸收峰峰位基本吻合,而较为全面反映分子间氢键及范德华力作用的晶胞构型计算谱与实验谱则较为吻合。同时表明,与样品结构较为一致的、保持苏氨酸物理性质的最小结构为晶胞。  相似文献   

8.
为研究太赫兹波技术在植物中纤维素检测的应用前景。选取玉米、麦壳、芦苇进行太赫兹时域光谱检测,并与纤维素粉作为参考样品进行比较,分析结果表明上述三种植物样品和参考样品在1.75,1.62,1.1和0.7 THz等频率处均有明显特征吸收峰。比较几种样品的吸收强度情况,纤维素粉在1.62 THz处吸收最强,采用化学分析方法检测玉米、麦壳以及芦苇中纤维素含量,并与太赫兹波检测比较,发现在该频率处植物中纤维素含量越高,则其在太赫兹波中的吸收峰也越高,说明植物纤维素能在该频率段内发生晶格振动,使其官能团出现变形、弯曲或伸缩等变化。利用密度泛函理论对纤维素进行量子化学计算,也获得纤维素在0.7,1.1和1.75 THz处特征吸收峰,表明了太赫兹时域光谱能用于植物纤维素检测。最后,用红外光谱技术对玉米和纤维素粉进行检测,探讨纤维素分子微结构的扭转及振动模式,并把它们的特征吸收谱与量子化学计算进行比较,实验结果和理论计算基本一致。这为植物纤维素的检测判断提供了一种新方法。  相似文献   

9.
很多生物大分子的特征振动模式和转动模式都位于太赫兹波段范围内,且太赫兹波的低电子能特性使其在实验过程中不会对待测样品造成破坏,所以可以采用太赫兹技术来鉴别生物样品。在许多研究中,生物样品都是溶液状态,溶液中水和其他分子之间的相互作用涉及很多生物现象,所以研究水的太赫兹特性就显得至关重要。众所周知,水分子是十分常见的极性分子,分子间氢键会与太赫兹波发生强烈的相互作用,从而使得水对太赫兹波有很强的吸收作用,导致利用太赫兹技术研究水溶液中生物样品的动态特性变得相当困难。为了解决这一难题,可以引入微流控技术。微流控技术以能精确操控微尺度流体而著称,其沟道深度可以达到50μm甚至更小。由于微流控技术减小了太赫兹波在流体中的传播距离,从而极大地减小了水对太赫兹波的吸收。本研究采用对太赫兹波具有高透过率的Zeonor 1420R材料制成了夹心式微流控芯片,芯片上微沟道的长度、宽度和深度分别为3 cm,4 mm和50 μm,太赫兹探测区的直径为3 mm。在制作微流控芯片时,利用厚度为50μm的强黏性双面胶代替传统夹心式微流控芯片中的聚二甲基硅氧烷(PDMS)薄膜,使微流控芯片在加热过程中不再有漏液现象。另外,设计了一个温控系统,它由加热片、温度传感器和温控仪构成,该温控系统能够以0.1 ℃的精度控制温度。利用该系统对微流控芯片中的去离子水进行加热,从20~90 ℃每隔5 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度升高,水的太赫兹透过率不断减小,说明水对太赫兹波的吸收随着温度的升高而变大。此结果为未来在不同环境温度下利用微流控技术研究液态样品的太赫兹吸收特性提供了先决条件,为未来太赫兹的应用与发展提供技术支持。  相似文献   

10.
采用太赫兹时域光谱(THz-TDS)和傅里叶变换红外光谱(FTIR),测量了L-抗坏血酸与硫胺素在0.10~3.50 THz的光谱特性。给出了两种维生素的分子模型,详细分析比较了抗坏血酸与硫胺素在两种方法测量下吸收光谱的异同。结果表明:利用太赫兹时域光谱和傅里叶红外光谱测得的特征吸收谱在0.70~3.00 THz完全吻合,而在较低频段0.30~0.50 THz,两种样品的傅里叶红外光谱展现了太赫兹时域光谱所没有的特征峰,同时硫胺素样品在8.00~12.00 THz范围内,8.75,8.85,9.00,9.30和10.30 THz出现指纹峰;研究了样品掺杂不同比例聚乙烯粉末时THz吸收光谱的差异,抗坏血酸对太赫兹吸收较弱,总结了两种维生素的折射率曲线与其吸收峰的对应关系;结果对抗坏血酸和硫胺素的分析识别以及维生素太赫兹光谱数据库的建立具有重要参考意义。  相似文献   

11.
Jia-Hui Wang 《中国物理 B》2021,30(11):110204-110204
We fabricated a microfluidic chip with simple structure and good sealing performance, and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system. The tested liquids were deionised water and CuSO4, CuCl2, NaHCO3, Na2CO3 and NaCl solutions. The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases. The applied electric field alters the dipole moment of water molecules in the electrolyte solution, which affects the vibration and rotation of the whole water molecules, breaks the hydrogen bonds in the water, increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.  相似文献   

12.
许多生物大分子的振动和转动能级都落在THz波段范围内,因此可以采用THz光谱技术定性地鉴别生物样品。但是大部分生物分子的活性需在液体环境中才能表现出来,而水作为极性物质对THz波具有较强的吸收特性。因此,在THz光谱技术中通常采取各种措施来减少水的影响,以防止水溶液中生物样品的信息被掩盖。该研究设计了两种可利用透射式太赫兹时域光谱(THz-TDS)系统检测的夹心式微流控芯片,通过减小THz与水的作用距离来减少水对THz的吸收,从而达到高透过率的目的。微流控芯片采用环烯烃共聚物(Zeonor 1420R)作为基片和盖片,聚二甲基硅氧烷(PDMS)作为沟道夹层,利用THz-TDS系统对该芯片进行了测试,测得该芯片在0.2~2.6 THz频率范围内的透过率可以达到80%以上。在微流控芯片中分别加入去离子水、1,2-丙二醇以及二者在不同体积比下的混合溶液,并测量了它们的透射谱。结果表明,不同比例溶液的THz光谱明显不同,说明该芯片在测量液态样品方面的可行性。此外,用该芯片分别研究了不同浓度的氯化钾和碘化钾溶液,发现氯化钾溶液随着浓度的增加THz透过率减弱,而碘化钾溶液则相反。初步认为,电解质改变了水溶液中的氢键密度,从而导致溶液对THz吸收的改变。  相似文献   

13.
太赫兹波的光子能量只有毫电子伏特,远低于各种化学键的键能,因此不会和生物组织发生有害的电离反应;另一方面,由于大部分生物分子转动和振动所具有的特征能量都在太赫兹范围内,所以利用太赫兹波可以对生物分子进行识别。水是生物环境中最重要的液体,生物分子与液态水之间的相互作用决定了其生物活性,因此研究液态水的太赫兹特性就显得十分重要。水作为极性液体,其中的偶极分子-偶极分子间的相互作用和极性分子间的氢键会对太赫兹波产生较大的吸收作用,这就使利用太赫兹技术研究液体环境下的生物分子动力学特性变得相当困难。微流控技术通过改变微流控芯片中液体通道的深度来控制液体样品的厚度,以减少太赫兹波与液体样品的作用距离,从而使水对太赫兹波的吸收大幅减小。利用对太赫兹波的透过率高达95%的Zeonor 1420R材料和双面胶制作了可重复性使用的夹心式微流控芯片,芯片上液体通道的长度、宽度、深度分别为2 cm,5 mm和50 μm。另外,设计制作了一个制冷系统,由制冷片、散热模块、温度传感器、保温箱和温度控制器构成,该制冷系统可以对保温箱的内部环境制冷并在一定程度上保持恒温。在实验过程中,将注满水的微流控芯片置于保温箱中,利用制冷系统对微流控芯片中的水进行制冷处理,从8~-3 ℃每隔1 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度降低,水的太赫兹透过率不断增大,说明水对太赫兹波的吸收随着温度的降低而降低。此结果为将来在不同低温环境下利用微流控技术研究液体样品的太赫兹吸收特性打下了基础,为太赫兹在生物领域的应用与发展提供了技术支持。  相似文献   

14.
采用傅里叶远红外光谱仪(FTIR),在室温条件下测量了多种饱和直链有机小分子的太赫兹光谱。测试结果显示,有机官能团的差异导致有机物的太赫兹光谱特征显著不同。其中,有机物的晶格振动吸收峰和分子间氢键的振动吸收峰分别位于太赫兹高频和低频波段。而且,饱和直链一元醇的—OH官能团产生的分子间氢键的特征峰位于57 cm-1,而三十烷酸的—COOH官能团产生的分子间氢键的特征峰则位于74 cm-1。分子间氢键使三十烷醇和三十烷酸对太赫兹辐射的吸收能力明显地强于三十烷烃。相比于三十烷醇,三十烷酸的太赫兹特征峰还发生有规律的红移和蓝移现象。此外,还采用密度泛函理论B3LYP/6-311G(d, p)基组对饱和直链烷烃、烷醇和烷酸的太赫兹光谱进行了仿真计算,发现分子间氢键作用越强的有机物的单体分子的仿真结果与实测光谱的吻合程度越低。二聚体结构的仿真结果与实测光谱的吻合程度明显地高于单分子结构。研究结果对利用FTIR研究其他有机官能团的太赫兹光谱特征、探索有机分子内部的振动模式、探究有机物太赫兹响应的物理原理及器件应用等具有重要意义。  相似文献   

15.
为深入了解β-D-吡喃半乳糖在太赫兹波段的光谱特性, 利用太赫兹时域光谱技术测量了室温下β-D-吡喃半乳糖晶体在0.3~3.0 THz范围内的吸收谱及折射率谱, 同时利用傅里叶变换红外光谱技术获得了半乳糖在1.5~19.5 THz之间的吸收谱。实验研究的同时, 运用密度泛函理论和6-311+G**基组计算了气态孤立β-D-吡喃半乳糖分子的结构及其在太赫兹波段的振动频率, 并据此对实验光谱吸收峰进行了指认。研究结果表明, 除了因为分子间效应而导致的少许偏移外, 理论计算结果与实验数据吻合得很好; 实验光谱在6 THz以上频段的共振吸收峰来源于明确的分子内振动模式, 而6 THz以下低频段的共振吸收峰则主要来源于分子间氢键或晶体的声子模式。实验和理论研究的对比表明物质的远红外吸收特征对于分子的结构和空间排列非常敏感。  相似文献   

16.
分子的多形态(多晶型)是指化学组成相同但存在不止一种晶体形式的物质。这些多形态广泛存在于自然界中,其中药物的多形态尤其普遍。这些药物多形态虽然具有相同的化学分子组成,但其理化性质却存在差异,最终会导致药物作用功能的不同。近年来,随着太赫兹(THz)辐射源的产生方式成为一种常规技术后,太赫兹时域光谱技术(THz-TDS)的应用领域逐渐被拓宽。因为THz波不仅与分子内作用模式有关,更与氢键和范德华力等弱相互作用模式密切相关;THz辐射可以诱发低频键振动、晶体声子振动、氢键拉伸和扭转振动,许多有机分子的集体振动模式处于该波段,尤其是药物分子。基于此,采用THz-TDS技术,研究了马来酰肼药物分子两种多形态(MH2和MH3)在0.25~2.25 THz波段的THz吸收谱。通过实验测试,发现MH2和MH3的THz特征吸收峰完全不同,MH2获取到了三个特征吸收峰,分别位于0.34,1.41和1.76 THz;MH3晶型获取两个特征吸收峰,分别位于0.75和1.86 THz处;此结果表明马来酰肼多形态可以通过其THz特征吸收峰进行辨别表征。接着,为了对THz实验吸收峰进行解析,采用固态密度泛函理论(DFT)模拟了马来酰肼的红外吸收模式;在实验和理论频谱数据匹配的情况下,分析讨论了特征吸收峰的来源,发现MH2和MH3的THz吸收峰对其三维空间结构非常敏感,吸收峰均来源于分子间相互作用力。最后,为使药物研究能够与实际应用结合,对马来酰肼的商用药品青鲜素进行了THz光谱测试,通过其与马来酰肼多形态的THz吸收峰比较,发现人们日常使用的青鲜素是MH3晶型。此研究结果表明,THz-TDS技术是一种很有潜力的药物多形态检测工具,此研究有望解决马来酰肼多形态在工业生产及临床应用上检测难的问题。  相似文献   

17.
利用太赫兹时域光谱技术探测了室温条件下的酪氨酸样品的频谱响应, 获得了酪氨酸的太赫兹频谱。实验结果表明,酪氨酸在太赫兹波段存在特征频谱响应,可以用来探测分子的结构和振动情况。在获得的太赫兹频谱中,首次观察到0.23和2.46 THz附近存在的吸收峰。用HF方法和DFT计算了酪氨酸单分子和酪氨酸二聚体的太赫兹频谱,对理论计算和实验测量的偏离进行了详细的分析。在0.23 THz处的吸收峰,初步标定为氢键连接的2个酪氨酸分子的面外摇摆振动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号