首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 177 毫秒
1.
蓝宝石作为珍贵的彩色宝石深受人们喜爱,随着宝石合成技术的不断发展,市面上已有许多种合成方法制成的合成蓝宝石,常规的宝石学鉴定不能简单准确的区分天然蓝宝石与不同合成方法的合成蓝宝石。论文利用紫外-可见-近红外光谱仪对蓝宝石进行光谱分析,发现天然蓝宝石具有387 nm、452 nm、566 nm吸收峰,而提拉法、焰熔法和泡生法合成蓝宝石则无这些吸收峰;提拉法和焰熔法合成蓝宝石都具有600 nm附近的吸收带;泡生法合成蓝宝石存在660 nm附近的吸收峰,其他三种蓝宝石无此吸收峰。通过拉曼光谱特征峰拟合分析与SPSS单因素方差分析,发现天然蓝宝石和不同方法合成蓝宝石的半高宽值存在显著差异,天然蓝宝石的半高宽值大于10.0 cm^(-1),三种合成蓝宝石的半高宽值小于10.0 cm^(-1);泡生法合成蓝宝石半高宽集中在8 cm^(-1)附近,而焰熔法合成蓝宝石的半高宽普遍在8 cm^(-1)~10cm^(-1)范围内,提拉法合成蓝宝石半高宽则分布在6 cm^(-1)~8 cm^(-1)范围内。对比研究紫外-可见-近红外光谱与拉曼光谱的显著谱图特征差异,可简单、有效、无损的区分鉴定天然蓝宝石与不同合成方法合成的蓝宝石。  相似文献   

2.
天然祖母绿和水热法合成祖母绿的拉曼光谱分析   总被引:1,自引:0,他引:1  
水热法合成祖母绿的化学成分、晶体结构和宝石学性质与天然祖母绿相似,常规宝石学检测项无法有效区分。合成祖母绿的生长环境比天然祖母绿理想,其晶格应力较小,相应的声子寿命较长,对应的拉曼谱峰线宽较窄,因此拉曼光谱半高宽可提供祖母绿是天然或合成的信息。本论文使用德国布鲁克Senterra型激光拉曼光谱仪进行测试分析,发现天然祖母绿的半高宽均在8.5cm-1以上,而水热法合成祖母绿均在8.5cm-1以下。  相似文献   

3.
采用常规宝石学测试方法,结合能量色散型X射线荧光光谱仪、傅里叶变换红外光谱仪、激光拉曼光谱仪、荧光光谱仪等测试分析方法,对比天然及充填处理天河石的谱学特征,旨在探寻有效无损鉴别充填处理天河石的方法。结果表明,充填处理天河石同天然天河石折射率范围一致,均为1.52~1.53。充填处理天河石的光泽较弱,为弱玻璃—蜡状光泽,有别于天然天河石的玻璃光泽。放大观察,部分充填处理天河石样品可见裂隙处出现明显内凹现象,内凹处光泽明显较弱,裂隙中还可存在气泡。较弱的光泽以及放大观察可以辅助区分天然天河石与充填处理天河石。天然及充填处理天河石中所含的主量元素种类一致,均含有Al,Si,K和Rb,并未检测到属于充填物质的异常化学元素。红外反射光谱在指纹区都表现为天河石本身基团振动所产生的吸收;在官能团区,天然天河石没有明显吸收,而充填处理天河石存在由(—CH2—)振动所产生的2 844和2 912 cm-1两处特征吸收峰。天然及充填处理天河石的激光拉曼光谱在100~1 500 cm-1波段内特征相同,均表现为天河石本身基团振动所产生的拉曼峰。充填处理天河石在100~3 700 cm-1波段内荧光干扰明显强于天然天河石,当检测到表面裂隙中的有机充填物时荧光干扰会更强并出现区别于天然天河石的拉曼峰。天然天河石与充填处理天河石的三维荧光光谱不管是荧光中心位置还是相对强度都没有典型区别,且天然天河石自身具有不同的荧光特征,三维荧光光谱不能有效区分天然天河石与充填处理天河石。  相似文献   

4.
尖晶石作为一种珍贵的宝石材料,因其瑰丽的颜色外观和悠久的历史而广受称赞。变色效应作为宝石学中一种常见的光学现象,在变石,蓝宝石,尖晶石,石榴石等宝石中都可以出现。通常将宝石的变色效应归结为Cr离子和V离子所致,但是目前有关变色尖晶石的报道较少,缺乏致色元素和变色机理的研究。本次研究对象是一颗具有变色效应的尖晶石(在D65光源下呈蓝色,在A光源下呈蓝紫色),和两颗不具有变色效应的蓝色尖晶石(两种光源下色调无明显变化)。运用电感耦合等离子体质谱仪(LA-ICP-MS)、紫外可见光谱仪、拉曼光谱仪、光致发光光谱仪获取样品的成分和光谱信息。LA-ICP-MS化学成分测试结果表明,三颗尖晶石均为镁铝尖晶石,主要化学成分为MgO和Al2O3,并含有Fe,V,Cr,Co和Zn等微量元素,在变色尖晶石中含有较多的Fe离子和微量的Co离子,不含有Cr离子,并且变色尖晶石与无变色效应的蓝色尖晶石中V离子含量相近。变色尖晶石紫外可见吸收光谱具有位于387, 461, 478, 527, 559, 590, 627和668 nm处的吸收峰,其中387, 461, 478和668 nm吸收峰与Fe离子有关。559,590和627 nm处的吸收峰是由Co离子d轨道电子自旋允许跃迁4A2→4T1(4P)并经自旋-轨道耦合作用分裂所致。此外,四面体配位中的Fe2+ d—d自旋禁阻跃迁5E(D)→3T1(H)同样在559 nm处产生吸收峰。由Co离子和Fe离子共同作用,在559 nm附近产生的吸收宽带是尖晶石产生变色效应的主要原因。拉曼光谱测试结果显示变色尖晶石与其他两颗蓝色尖晶石无差异,可见311,405,663和765 cm-1四个特征拉曼位移峰,依次对应F2g(1), Eg, F2g(3)和A1g振动。光致发光光谱(PL)测试发现变色尖晶石中处于Td对称位置的Co2+的4T1(P)能级会分裂成为三个子能级,电子由三个4T1(P)激发态的子能级回落到4A2(F)基态而产生位于686,650和645 nm处的发光峰。变色尖晶石中Co离子含量很低,并且Fe离子含量较高,受到Fe离子荧光猝灭作用,样品无红色发光现象。  相似文献   

5.
氟磷锰矿是一种稀有矿物,宝石级氟磷锰矿可呈现高饱和度的红橙色。选取三颗来自巴基斯坦的样品,通过电子探针、拉曼光谱、红外光谱和紫外-可见光吸收光谱进行系统研究,旨在获得其化学成分、光谱学特征,分析致色离子,为其品种鉴定、优化处理等提供重要数据。样品平均化学成分化学式为(Mn1.66, Fe0.17, Ca0.15, Mg0.03)Σ2.02[P0.99O4.14]F0.82,属含少量铁的氟磷锰矿,与文献记载的巴基斯坦Shigar山谷产出的宝石级氟磷锰矿化学成分相似。拉曼光谱与红外光谱显示氟磷锰矿的主要振动基团为PO3-4基团。拉曼光谱的主峰位于980 cm-1,可用于分析羟基与氟的替代关系,450和427 cm-1双峰的强度比可反映Mn2+和Fe2+的替代关系。红外光谱在400~650 cm-1波段和900~1 200 cm-1波段有吸收峰,可以反映羟基与氟和Mn2+与Fe2+的替代关系。因此,拉曼光谱、红外光谱特征可清晰区分氟磷锰矿、羟磷锰矿和氟磷铁矿三个类质同像矿物。紫外-可见光吸收光谱中,以406 nm为中心的强吸收峰是由于Mn2+自旋禁阻跃迁导致;以455 nm为中心的弱吸收峰是由于Fe2+自旋禁阻跃迁导致,Mn2+对此峰也有一定贡献;以533 nm为中心的吸收峰是由Mn2+的6A1g(S)→4T1g(G)跃迁导致。样品呈现红橙色,属自色矿物。氟磷锰矿族矿物普遍存在类质同象,拉曼光谱、红外光谱可准确鉴定氟磷锰矿,电子探针可以为其产地溯源提供重要信息。  相似文献   

6.
山东济南中乌新材料有限公司利用六面顶油压机生产出大颗粒钻石,为了掌握这些合成钻石的品质及与天然钻石的区分方法,采用宽频诱导发光光谱仪(GV5000)、红外光谱仪、钻石特征光谱检测仪(PL5000)、激光诱导击穿光谱仪和X射线能谱仪,对该公司生产的225粒无色、蓝色和黄色高温高压(HPHT)合成钻石进行检测,并与天然钻石对比。HPHT合成钻石样品的晶形以(111)晶面和(100)晶面共存的聚形为主导。原石切磨成圆钻形成品的出成率在20%~67%之间,净度级别为VVS-P,颜色级别为D-H。通过GV5000分析,三种颜色样品均可观察到立方八面体生长结构发光图案,无色HPHT合成钻石为强蓝色荧光和磷光,发光峰位于495 nm,与晶格中的顺磁氮有关;蓝色HPHT合成钻石为蓝-绿蓝色荧光和蓝色磷光,发光峰位于501 nm,与晶格中的顺磁氮、硼有关;黄色HPHT合成钻石为弱绿色荧光和磷光,显示556和883 nm Ni+相关发光峰,这些特征可与天然钻石相区分。红外光谱分析表明,无色HPHT合成钻石在1 332~1 100 cm-1无明显氮相关吸收,在2 802 cm-1有B0相关吸收,为含有少量硼的Ⅱa型;蓝色HPHT合成钻石位于1 294 cm-1有与B-相关的强吸收,归属为Ⅱb型;黄色HPHT合成钻石位于1 130和1 344 cm-1有与孤氮相关的明显吸收,归属为Ⅰb型。PL5000光致发光光谱显示,三种颜色HPHT合成钻石可检测到659,694,707,714和883 nm等镍相关缺陷发光峰。相比之下,无色和黄色天然钻石通常为Ⅰa型,具有1 282和1 175 cm-1等聚合氮的红外光谱吸收,光致发光光谱通常可检测到415 nm(N3)零声子线,由孤氮、硼和镍等缺陷导致的光谱特征极为罕见。因此,红外光谱和光致发光光谱特征可作为重要的鉴别依据。激光诱导击穿光谱仪检测到无色HPHT合成钻石的出露包裹体主要成分为Fe。X射线能谱分析显示,对于含包裹体较多的样品,无色和蓝色HPHT合成钻石可检测到Fe,黄色HPHT合成钻石可检测到Fe和Ni,为其中包裹体的成分,这可作为HPHT合成钻石鉴定性特征。综上所述,通过GV5000超短波紫外荧光和磷光测试,配合红外光谱和光致发光光谱特征,结合包裹体成分特征,可以有效区分该研究的合成钻石和天然钻石。  相似文献   

7.
针对新出现在市场上的一种水热法合成蓝绿色绿柱石,运用LA-ICP-MS、红外光谱、拉曼光谱、紫外-可见光谱进行系统研究,旨在获得其宝石学及谱学特征,探讨颜色成因,为检测机构鉴定该合成宝石提供参考数据。结果表明,样品折射率为1.570~1.576,与天然绿柱石相近,内部含特征的水波纹状生长纹理,可作为主要鉴定特征之一。LA-ICP-MS分析表明,该合成绿柱石化学成分相对单一,主要致色元素为Cr和Ti,还含有微量的V,碱金属含量极低。紫外-可见光谱主要显示Cr的吸收峰,结合LA-ICP-MS测试,认为其蓝绿色调主要由Cr和Ti共同导致。其中绿色调主要由Cr致色,微量的V可能也对绿色调有所影响。钛则致紫色,与绿色叠加形成样品具有的蓝绿色调,具体的致色机理有待进一步研究。在2 000~4 000 cm-1的红外光谱中,以3 700 cm-1为中心的宽吸收带吸收强烈,归属于两种类型通道水的基频振动及其耦合;2 449,2 615,2 746,2 813,2 885和2 983 cm -1处吸收峰,均为Cl-引起;3 108和3 299 cm-1的较强吸收峰由NH4+所致。在4 000~8 000 cm-1的近红外吸收光谱中,为合成绿柱石通道水的合频和倍频振动区。其中,Ⅰ型水的合频振动所致的5 275 cm-1处强吸收峰、伴随5 106和5 455 cm-1处较强吸收峰,及Ⅰ型水倍频振动所致的7 143 cm-1强吸收峰,可作为样品是水热法合成绿柱石的重要鉴定特征,且对于鉴定较厚的刻面宝石尤为重要。天然绿柱石中相应的这两处吸收峰强度较弱甚至不存在。样品的拉曼光谱和标准绿柱石的拉曼光谱一致。685 cm-1峰的半高宽为7.1~7.3 cm-1,小于8.5 cm-1,可作为水热法合成绿柱石的又一鉴定特征。  相似文献   

8.
采用常规宝石学测试方法,结合能量色散型X射线荧光光谱仪、激光拉曼光谱仪、傅里叶变换红外光谱仪、荧光光谱仪等测试分析方法,对天然及充填处理摩根石的谱学特征进行了对比研究,旨在研究充填处理摩根石的宝石学、谱学特征及探寻有效的无损鉴别充填处理摩根石的方法。结果表明,充填处理摩根石的折射率在1.57左右,略低于天然摩根石折射率;充填处理摩根石相对密度为2.71~2.76。天然摩根石在长波和短波紫外荧光下都不发光,充填处理摩根石在长波和短波紫外荧光下均显示弱至中等的白色荧光,个别样品的荧光沿裂隙分布;放大观察后,部分充填处理摩根石表面可见细网纹状开放裂隙,且在裂隙中可见充胶痕迹。能量色散型X射线荧光光谱仪测试显示天然摩根石及充填处理摩根石中均含有Si,Al,Rb和Cs等元素。天然摩根石与充填处理摩根石的激光拉曼光谱无明显差异,激光拉曼光谱仪对于区分天然摩根石与充填处理摩根石效果不明显。天然摩根石的红外光谱在1 300~400 cm-1间,主要为Si-O-Si环、Be-O和Al-O的基团振动;在4 000~2 000 cm-1官能团区有CO2产生的2 359 cm-1吸收和NaH产生的3 110和3 168 cm-1特征吸收峰。充填处理摩根石除了摩根石本身基团振动吸收外,在2 870,2 930和2 965 cm-1普遍存在(-CH3-)、(-CH2-)吸收;在3 035和3 057 cm-1存在苯环引起的吸收。三维荧光光谱图分析显示天然摩根石荧光非常弱,无特征荧光中心,相对强度在500以内;充填处理摩根石的荧光中心主要为410 nm左右的单荧光中心和440和465 nm的双荧光中心,相对强度在2 000以上。充填处理摩根石的荧光中心相对强度明显高于天然摩根石,归因于充填处理过程中添加的有机胶中的芳香族化合物所致。红外吸收光谱及荧光光谱测试技术可作为区分天然摩根石和充填处理摩根石的快捷有效的无损检测手段。  相似文献   

9.
翡翠为一种珍贵的玉石。不同品级的翡翠价值差异巨大,翡翠经充填、染色等处理以提高外观质量,并冒充天然翡翠。鉴别翡翠就显得非常必要。全面收集了市场上常见的A,B,C,不同颜色B+C货翡翠样品,在常规宝石学特征描述的基础上, 进行了三维荧光光谱测试。三维荧光光谱技术是近年发展起来的一门新的荧光分析技术,该技术在宝石学方面还未得到广泛应用。目前主要依赖红外光谱对经充胶处理的宝石进行无损检测,其测试结果会受到样品表面抛光程度及样品透明度的影响,三维荧光光谱技术对样品抛光程度及透明度要求不高,在一定程度上能避免红外光谱由于抛光程度、透明度对测试结果的影响,采用三维荧光光谱技术对市场上不同处理类型翡翠样品的三维荧光光谱特征进行分析, 结果显示:除A货翡翠没有荧光反应外, B货翡翠荧光中心多集中在380 nm(λex)/440 nm(λem),在长波紫外灯下具有中强蓝白色荧光。C货翡翠荧光中心集中在365 nm(λex)/443 nm(λem),在长波紫外光下呈弱紫色荧光,B+C紫色翡翠荧光中心集中在365(λex)/443 nm(λem), 长波紫外光下具有蓝紫色荧光。B+C绿色翡翠荧光峰值主要集中在290(λex)/308 nm(λem),短波紫外光下具有弱蓝白色荧光。B+C黄色翡翠荧光峰值集中在335(λex)/377 nm(λem), 长波紫外光下具有弱绿色荧光。B+C红色翡翠荧光峰值为290(λex)/308 nm(λem),长波紫外光下具有弱绿色荧光。在255 nm激发光源下时,不同处理类型翡翠发光范围集中在紫-蓝区域,发光中心波长呈B+C绿色翡翠>B货翡翠>C货翡翠,在365 nm的激发光源下,翡翠样品的荧光明显强于短波,不同处理类型翡翠发光范围集中在紫-绿区域,发光中心波长呈B+C黄色翡翠>B+C绿色翡翠>B+C紫色翡翠>C货翡翠>B货翡翠的大小关系。三维荧光光谱有助于表征树脂,有机染料及金属染剂, 它能快速有效鉴别不同方法处理的翡翠类型。  相似文献   

10.
采用高温固相法制备不同浓度Tb元素掺杂的硅铝酸盐荧光材料。当烧结温度为1 350 ℃时其荧光强度达到最大值。通过X射线衍射图谱可知体系中基质材料为CaAl2Si2O8,Tb元素以Ca2Tb8(SiO4)6O2相存在。通过拉曼光谱分析可知,870 cm-1处振动峰与Ca2Tb8(SiO4)6O2中Tb与硅氧四面体的伸缩振动相关;Tb原子与硅氧四面体之间的弯曲振动产生408 cm-1振动峰。随着Tb掺杂量的增加,拉曼振动峰强度,荧光分光光度计测得的荧光光谱以及拉曼光谱仪测得的光致发光光谱的峰强均呈现先增后减的变化规律。该体系中Tb元素与硅氧四面体匹配数量逐渐增加,当Tb掺杂量超过一定极限值时,体系内发生浓度猝灭,导致荧光性能下降。采用325 nm激光作为激发光源,用拉曼光谱仪的光致发光测量模式产生的峰形与传统荧光分光光度计的光谱曲线一致,但其光谱分辨率明显高于传统荧光分光光度计获得的光谱,有助于对细微能级跃迁现象加以区分。  相似文献   

11.
对中国山东昌乐Be扩散处理、热处理和未处理双色蓝宝石(黄色和蓝色)进行了宝石学常规测试、紫外可见光谱、红外光谱、电子探针和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)测试,以获得它们的谱学特征,提出其鉴别方法。研究发现Be扩散处理双色蓝宝石仅出现Fe3+—Fe3+形成的紫外可见吸收峰,而且377nm吸收峰的强度异常高。红外光谱中,热处理和未处理的双色蓝宝石存在明显的3 310cm-1羟基吸收峰,而该吸收峰在Be扩散处理双色蓝宝石中消失。因此,紫外可见光谱和红外光谱可用于鉴别Be扩散处理、热处理和未处理双色蓝宝石。另外,二碘甲烷浸油实验也可识别Be扩散处理双色蓝宝石。  相似文献   

12.
近期在玉石市场上出现了一种名为“天青冻”的蓝色蛇纹石玉,为蛇纹石玉的一个新品种。采用偏光显微镜、扫描电子显微镜、激光剥蚀电感耦合等离子质谱仪和X射线粉晶衍射仪分析其结构特征、化学和矿物组成,并采用傅里叶变换红外光谱仪、激光拉曼光谱仪和紫外-可见分光光度计对其谱学特征进行研究。结果表明蛇纹石呈叶片状交织成毛毡状结构,并含有菱面体状的杂质矿物白云石。同时,X射线衍射谱2.53 Å(d202),1.56 Å(d062)和1.54 Å(d060)的特征衍射峰以及红外吸收光谱中3 673,997和641 cm-1的特征吸收峰表明其属叶蛇纹石,1 098和1 086 cm-1的特征拉曼峰指示了白云石和方解石的存在,这与其形成于SiO2热液交代白云岩的成矿环境相关。化学分析表明蓝色蛇纹石玉中的Fe元素含量较其他常见蛇纹石玉低。紫外可见吸收光谱中Fe2+→Fe3+电荷转移引起的强630 nm吸收带致其蓝色,Fe2+→Fe3+电荷转移引起的724 nm弱吸收带会导致其产生绿色调, 而由Fe2+和Fe3+自旋禁戒跃迁分别导致的537和488 nm弱吸收带对颜色影响较小。  相似文献   

13.
颜色不稳定黄色蓝宝石广泛存在市场中,如何有效鉴别颜色不稳定黄色蓝宝石的特征是当前宝石学研究的热点。利用改色实验、紫外-可见光谱(UV-Vis)、三维荧光光谱对颜色不稳定黄色蓝宝石进行深入的谱学特征研究。改色实验表明斯里兰卡黄色蓝宝石中部分存在光致变色的现象,短波紫外光会导致样品着色,而太阳光会导致样品褪色。紫外光照后黄色蓝宝石的颜色由稳定部分和不稳定部分共同组成。颜色不稳定蓝宝石的“着色态”和“褪色态”紫外-可见光谱可见明显的蓝紫区吸收,这可能与蓝宝石中O2--Fe3+的电荷转移有关,导致了蓝宝石稳定的黄色调。蓝宝石的紫外-可见光谱在“着色态”相比“褪色态”可见明显的蓝紫区吸收增强,可能由于紫外光照射增强了O2--Fe3+之间的电荷转移。紫外-可见光谱测试表明样品中具有弱的与Fe有关的吸收峰,这与样品含有较低的Fe含量一致,不足以产生稳定黄色调。三维荧光光谱分析结果表明颜色不稳定黄色蓝宝石的“着色态”和“褪色态”具有一致的激发光波长Ex=325~335 nm、发射光波长Em=560~570 nm的特征荧光中心,在“着色态”时的荧光强度明显高于“褪色态”。含铁黄色蓝宝石具有荧光效应且特征的荧光中心可作为识别这种颜色不稳定黄色蓝宝石的潜在鉴定手段。综合报道了颜色不稳定黄色蓝宝石的谱学特征与可能的颜色成因,为识别颜色不稳定的蓝宝石提供了鉴定依据,同时为后续改色处理的工艺提供了理论基础。  相似文献   

14.
稀土化合物Raman谱中荧光带的辨认   总被引:1,自引:1,他引:0  
薛理辉  林益 《光散射学报》1999,11(3):274-278
研究了三价稀土氧化物及退火结晶褐钇铌矿和褐铈铌矿在4880和5145nm激光激发下所得Raman光谱中的荧光带。结果表明,在这两种激光线激发下,Sm3+、Eu3+和Er3+的荧光对稀土化合物的Raman光谱有很大干扰。提出几种在稀土化合物Raman光谱中辨认荧光带的方法。  相似文献   

15.
通过紫外-可见-近红外(UV-Vis-NIR) 吸收光谱、傅里叶变换红外(FTIR)光谱及钻石观测仪( DiamondViewTM)对天然钻石、经辐照或热处理的天然钻石、高温高压(HTHP)合成钻石及化学气相沉积(CVD)合成钻石进行了较系统的谱图及微区生长结构的对比研究。结果表明:天然钻石、经辐照或高温退火处理后的天然钻石、高温高压(HTHP)合成钻石的UV-Vis-NIR吸收谱图在200~1 100 nm区间谱图的反射率变化明显。相比之下,CVD合成钻石的反射率的变化相对较小。基于钻石样品的红外光谱分析,在其图谱中的800~1 600 cm-1区间,合成钻石样品、特别是CVD合成钻石在上述区间无明显的特征吸收峰位。此外,DiamondViewTM检测表明:一般而言,经HTHP处理后的CVD合成钻石出现平行的位错线,并呈现淡蓝色荧光。部分天然钻石可见典型的八面体生长线或称为树的年轮状图像,且因样品经辐照与高温高压处理后其荧光图像的颜色发生改变。高温高压合成钻石呈现出块状几何生长图像。限于钻石样品类别的多样性及合成钻石工艺的复杂且不断更新特征,天然钻石与合成钻石 的UV-Vis-NIR或FTIR光谱特征存在一定的相似性,因此不具有典型天然钻石图谱特征的样品需进一步辅以DiamondViewTM、光致发光光谱等其他检测仪器予以综合分析。  相似文献   

16.
3-羟基黄酮在不同极性和酸碱度溶剂中的光谱研究   总被引:2,自引:0,他引:2  
实验观测了3-羟基黄酮(3-HF)在不同极性溶剂中的吸收光谱和荧光光谱,发现在吸收光谱中有3个吸收带,峰值位于300和345 nm的两个吸收带较强,位于415 nm处的吸收带较弱。用345 nm作为激发光,观测到两个荧光带,其中峰值位于400 nm的荧光带为3-HF稀醇式构型的发射,随着溶剂极性的增大其强度增强,峰值位于526 nm的荧光带为3-HF互变异构体的发射,随着溶剂极性的增大其强度减弱,这表明溶剂极性阻碍质子转移的发生。用415 nm的光激发样品,在荧光光谱中发现了3个新荧光谱带,峰值分别位于440,471和515 nm,这3个荧光谱带归属至今未见报道。为了指认这3个荧光谱带,分别观测了3-HF在不同酸碱度溶液的荧光光谱及其吸收光谱,通过对这些光谱的分析研究,指认出荧光峰位于440和471 nm的荧光谱带为3-HF的两种阳离子的发射,峰值位于515 nm的荧光谱带为3-HF的阴离子的发射。  相似文献   

17.
天然水晶和水热法合成水晶的拉曼光谱分析   总被引:1,自引:0,他引:1  
水热法合成水晶是依据天然水晶的物理化学性质并模拟其形成环境制得,常规检测方法无法鉴别。本论文采用法国(HORIBA Jobin Yvon)OLYMPUS BX41激光拉曼仪测试分析,并对天然水晶与水热法合成水晶拉曼谱466 cm~(-1)谱峰进行高斯线性拟合,发现水晶半高宽均大于6.5 cm~(-1),而合成水晶半高宽均小于6.5 cm~(-1)。拉曼光谱半高宽值的差异可对天然水晶和水热法合成水晶的鉴别提供依据。  相似文献   

18.
1,5-萘二胺衍生物的光谱分析及发光性能研究   总被引:5,自引:2,他引:3  
合成了一种纯度较高的1,5-萘二胺衍生物(NPN),制备了NPN薄膜.利用紫外-可见吸收光谱和荧光发射光谱研究了NPN的发光行为,并结合电化学循环伏安法研究了其电子能级结构.结果表明,NPN的荧光光谱表现出明显的溶剂效应,认为其发生了从电子给体N原子到电子受体芳环之间的分子内电子转移,形成分子内电子转移络合物;从NPN薄膜与其溶液的吸收光谱峰值比较中看出吸收峰红移,认为薄膜中分子形成"J-聚集体";NPN的HOMO能级为-5.74 eV,光学禁带为2.79 eV;在365 nm紫外光的激发下,产生发光峰在448.6 nm附近、谱线带宽为72.6 nm的蓝光发射,发光亮度高,色纯度高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号