首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
物理学   17篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
排序方式: 共有17条查询结果,搜索用时 125 毫秒
1.
紫外灯下,化石树脂常见荧光现象,但其磷光现象仍有待表征与研究。将印度尼西亚产出的类似多米尼加蓝珀的化石树脂分为白色包体(Part Ⅰ)、暗色包体(Part Ⅱ)和基底(Part Ⅲ)三个部分,使用红外光谱确定其植物来源,借助三维荧光光谱仪表征化石树脂的光致发光现象(包括荧光和磷光),并探讨印尼化石树脂发光现象随地质过程变化的规律。红外光谱中1 384,1 377和1 367 cm-1的振动峰表征所研究的化石树脂来源于龙脑香科植物。印尼化石树脂的Part Ⅰ~Ⅲ中均存在3种特征荧光峰:紫外区330~380 nm、近紫外区388 nm和蓝绿光区446,474和508 nm,分别可被235,330和440 nm光有效激发;进一步推测可见光区荧光来源于两种不同的发光物质,两者在白色包体、暗色包体和基底中相对含量不同。同时,暗色包体和基底的磷光最强峰在537 nm附近和磷光寿命长达100 ms,比白色包体的430 nm磷光峰更强且衰减时间更长,贡献了印尼化石树脂的黄绿色磷光。结合前人火山活动刺激树脂的产生和还原环境促进芳构化作用的观点,推测印尼化石树脂中白色包体、暗色包体和基底的三维荧光光谱和磷光光谱可有效说明基底部分芳构化程度高于暗色包体,白色包体芳构化最低。  相似文献   
2.
紫黄晶是珍贵的水晶变种,其紫-黄色区域分别具有特征的中红外吸收光谱,在不同温度具有不同变化规律,这些规律无法在单次、单点实验中加以总结。实验通过热处理和显微红外光谱技术,对不同温度淬火紫黄晶的紫-黄色区进行线扫描,分析一系列温度、空间变化下的中红外光谱,实验表明水对于紫黄晶的颜色影响不大,在加热过程中谱线会发生规律性变化。紫色区3 585和3 614 cm-1尖锐峰、3 400 cm-1附近宽泛峰同时变化表明宝石在受热过程以结构水变化为主,而受热后紫色区的特征峰减弱及黄区特征峰增强的现象可能与结构水中H+或其他阳离子的移动有关。同时发现对于热处理产生的黄晶,中红外光谱仍保持紫晶特征吸收光谱。  相似文献   
3.
翡翠为一种珍贵的玉石。不同品级的翡翠价值差异巨大,翡翠经充填、染色等处理以提高外观质量,并冒充天然翡翠。鉴别翡翠就显得非常必要。全面收集了市场上常见的A,B,C,不同颜色B+C货翡翠样品,在常规宝石学特征描述的基础上, 进行了三维荧光光谱测试。三维荧光光谱技术是近年发展起来的一门新的荧光分析技术,该技术在宝石学方面还未得到广泛应用。目前主要依赖红外光谱对经充胶处理的宝石进行无损检测,其测试结果会受到样品表面抛光程度及样品透明度的影响,三维荧光光谱技术对样品抛光程度及透明度要求不高,在一定程度上能避免红外光谱由于抛光程度、透明度对测试结果的影响,采用三维荧光光谱技术对市场上不同处理类型翡翠样品的三维荧光光谱特征进行分析, 结果显示:除A货翡翠没有荧光反应外, B货翡翠荧光中心多集中在380 nm(λex)/440 nm(λem),在长波紫外灯下具有中强蓝白色荧光。C货翡翠荧光中心集中在365 nm(λex)/443 nm(λem),在长波紫外光下呈弱紫色荧光,B+C紫色翡翠荧光中心集中在365(λex)/443 nm(λem), 长波紫外光下具有蓝紫色荧光。B+C绿色翡翠荧光峰值主要集中在290(λex)/308 nm(λem),短波紫外光下具有弱蓝白色荧光。B+C黄色翡翠荧光峰值集中在335(λex)/377 nm(λem), 长波紫外光下具有弱绿色荧光。B+C红色翡翠荧光峰值为290(λex)/308 nm(λem),长波紫外光下具有弱绿色荧光。在255 nm激发光源下时,不同处理类型翡翠发光范围集中在紫-蓝区域,发光中心波长呈B+C绿色翡翠>B货翡翠>C货翡翠,在365 nm的激发光源下,翡翠样品的荧光明显强于短波,不同处理类型翡翠发光范围集中在紫-绿区域,发光中心波长呈B+C黄色翡翠>B+C绿色翡翠>B+C紫色翡翠>C货翡翠>B货翡翠的大小关系。三维荧光光谱有助于表征树脂,有机染料及金属染剂, 它能快速有效鉴别不同方法处理的翡翠类型。  相似文献   
4.
利用激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)测试方法对来自湖北的26块表面相对干净、颜色均匀的绿松石样品进行定值,每个样品表面按照“田字格”的方式逐一测试9个点,用于评价绿松石成分的均匀性。数据结果显示,绿松石样品中Al,P,K,Cu,Fe,V,Cr和Zn的平均变异系数在5.4%以下,而CaO和SiO2的平均变异系数分别为34.8%和16.2%,说明绿松石中Si和Ca元素存在明显的不均匀性。选取其中的21个样品作为参考标准样品,5个作为未知样品,采用能量色散型X射线荧光光谱仪(EDXRF)建立绿松石的工作曲线,用于测定绿松石的成分。研究结果显示主量元素Al,P和Cu工作曲线的相关系数在92.3%~94.3%之间,平均相对误差在4.6%~9.7%;微量元素Fe,Cr和Zn的相关系数达到0.990以上,K和V元素工作曲线的相关系数分别为0.939和0.972,这五种元素平均相对误差范围在7.2%~13.9%;而Si和Ca元素工作曲线的相关系数分别为0.958和0.866,且在5个未知样品中,Si和Ca元素的平均相对误差分别为348%和27.8%,这与绿松石中Si和Ca元素的含量低和不均匀性,以及仪器方法的检出限等影响因素有关。重复性实验显示Al,P,Cu,Fe和Zn元素的相对标准偏差(RSD)均在1%以内,精密度较高;V,Cr,K,Ca和Si元素的RSD在1.34%~10.17%之间。该研究为快速、准确、无损地定量测定绿松石中Al,P,Cu,Fe,Cr,Zn,V和K等元素的含量提供了一种新思路和新方法,可运用于实验室的绿松石检测鉴定。  相似文献   
5.
国际珠宝交易市场上最近出现了一批价值不菲的无色透明的宝石级钠沸石刻面成品,为提供快速区分其与仿制品材料的依据,文章通过红外光谱和拉曼光谱对三颗钠沸石样品的振动光谱进行了研究。结果表明, 其红外光谱主要表现为:4 000~1 200 cm-1的吸收峰是结构中水导致的吸收;1 200~600 cm-1 的强吸收与TO4四面体的内部T—O(T为Si或Al)的反对称和对称伸缩振动有关。拉曼光谱散射峰主要分布在300~600和700~1 200 cm-1两个区间。300~360 cm-1处较弱强度的拉曼散射峰是由于结构中水分子所导致。482 cm-1处中等强度的峰归属于硅氧四面体内部由于变形导致的拉曼位移。726 cm-1处的拉曼散射峰归属于Al—O的伸缩振动;974,1 038,1 084 cm-1的三处拉曼散射峰都是Si—O的伸缩振动导致的拉曼位移。  相似文献   
6.
为了实现翡翠产地的快速无损鉴别,丰富宝玉石产地鉴别方法的多样性,基于红外光谱分析得到的数据,建立支持向量机(SVM)识别模型对三个产地的翡翠进行分析。实验收集了缅甸、俄罗斯和危地马拉3种翡翠的红外光谱数据共106条,为了达到更好的模型识别效果,建模前将原始的红外光谱数据进行反射率到吸光度的转化,再对光谱进行不同的预处理。预处理的目的是降低噪声、基线漂移和散射现象等对模型识别效果的影响。本次实验预处理使用的方法有SG平滑、均值中心化、标准化、趋势校正、多元散射校正、最大最小归一化、标准正态变换以及标准正态变换后再进行趋势校正。实验结果表明,对红外光谱进行预处理后模型得到的识别准确率均高于原始光谱的73%;三个产地翡翠的红外光谱分开进行多元散射校正和最大最小归一化得到的模型识别准确率高于混合进行预处理得到的结果;一些预处理方法结合使用也会提高模型的识别准确率,如标准正态变换和趋势校正。对三个产地翡翠的红外光谱分开进行最大最小归一化处理后得到的识别准确率达到了最高的95%,说明这种采用红外光谱技术建立的支持向量机(SVM)识别模型可以实现对翡翠产地的快速识别。  相似文献   
7.
磷灰石是珠宝市场上常见的宝石品种,因颜色丰富而广受欢迎。变色磷灰石是稀有品种且价格高昂,该品种在D65光源(色温6 500 K)下呈黄绿色,A光源(色温2 856 K)下呈粉红色,其可见光光谱的谱学特征与变色成因未被详细研究。基于此,将一颗变色磷灰石晶体,沿其平行c轴和垂直c轴方向各切下一个薄片并双面平行抛光,分别测试其可见光光谱与微量元素。结果发现,其可见光光谱中谱峰较多:位于583和578 nm处的吸收双峰强度最强,位于748和738 nm处的吸收双峰强度中等,分别位于688和526 nm处的吸收峰,强度较弱。还有一些非常微弱的吸收峰,分别位于514,483,473和443 nm处。位于748和738 nm处的吸收双峰与583和578 nm处的吸收双峰共同造成了红橙光区的透射窗,583和578 nm处的吸收双峰与526 nm处的吸收峰共同造成了黄绿光区的透射窗。D65光源和A光源由于相对光谱功率分布不同,在不同透射窗的透过有所不同,导致变色磷灰石在不同光源下呈现出不同颜色。D65光源中黄绿光成分较多,透过黄绿光区透射窗的成分较多,D65光源下磷灰石呈黄绿色,A光源中红光成分较多,通过红橙光区透射窗的成分较多,A光源下磷灰石呈粉红色。因此,磷灰石的变色效应与位于748和738 nm处的吸收双峰,位于583和578 nm处的吸收双峰以及位于526 nm处的吸收峰相关。根据微量元素数据与稀土元素的晶体场理论,这些吸收峰是由稀土元素钕(Nd)导致。根据不同晶体方向样品的可见光光谱特征,平行c轴方向变色效果更好,建议加工变色磷灰石晶体时宝石台面应尽量平行c轴。该研究结合微量元素与可见光光谱分析了变色磷灰石的变色成因,并为其加工切割方向提供了指导。  相似文献   
8.
红珊瑚是一种珍贵的有机宝石,自古以来因其红润的颜色与细腻的质地深受人们的喜爱与追捧。颜色漂亮的天然红珊瑚产量稀少,故有些红珊瑚会经过染色处理来改善其外观。拉曼光谱测试是鉴定红珊瑚有无经过染色处理的有力手段,故红珊瑚拉曼谱峰的归属对于鉴定有着重要的理论指导意义。由于红珊瑚拉曼峰的归属问题一直没有被深入研究,基于此,该研究测试了三颗颜色深浅不同的红珊瑚(Corallium rubrum)的拉曼光谱。同时,使用量子化学程序Gaussian 16运用密度泛函理论计算了红珊瑚中色素分子角黄素的理论拉曼光谱。创新性对比红珊瑚的实验拉曼光谱与角黄素分子的理论拉曼光谱,并进一步分析红珊瑚拉曼峰的归属。结果发现,红珊瑚的拉曼光谱中主要有1 514,1 295,1 177,1 125,1 086和1 016 cm-1拉曼峰,其中1 086 cm-1处的拉曼峰是方解石的CO2-3引起的。红珊瑚的红色越深,1 514,1 295,1 177,1 125和1 016 cm-1拉曼峰的强度越强,反之,红珊瑚的红色越浅,这些拉曼峰的强度越弱。红珊瑚拉曼光谱中的1 514,1 295,1 177,1 125和1 016 cm-1峰强与红珊瑚的红色深浅呈现出正相关的关系,故推测这套拉曼峰是由红珊瑚中的色素产生的。角黄素理论拉曼光谱中主要存在的拉曼峰位于1 512,1 269,1 189,1 159和999 cm-1处,与红珊瑚实验拉曼光谱中的1 514,1 295,1 177,1 125和1 016 cm-1峰的形状位置高度吻合。振动分析结果表明,角黄素的1 512,1 269,1 189,1 159和999 cm-1拉曼峰分别是由CC伸缩振动,C-H摇摆振动,C-C伸缩振动,C-C伸缩振动与甲基摇摆振动引起的。因此将红珊瑚拉曼光谱中的1 514,1 295,1 177,1 125和1 016 cm-1峰归属为CC伸缩振动,C-H摇摆振动,C-C伸缩振动,C-C伸缩振动与甲基摇摆振动。使用密度泛函理论的计算方法研究了红珊瑚拉曼谱峰的归属并对红珊瑚的拉曼谱峰进行了指认,为使用拉曼光谱鉴定红珊瑚提供了理论基础。同时为研究这类生物宝石材料拉曼谱峰的归属提供了一种新的方法。  相似文献   
9.
产于印度尼西亚的紫色葡萄状玉髓,具有特殊的球粒状外观和浓郁的紫罗兰体色,其双面抛光片在反射光照射下为紫色,透射光下则为棕黄色,且颜色浓集于球粒中心。为探究其颜色成因,进行了偏光显微镜和扫描电子显微镜结构观察,显微紫外-可见光谱,热处理以及LA-ICP-MS原位成分分析。玉髓具有纤维状核心--粗粒石英外壳的特殊结构,粗粒石英外壳粒度500 μm左右,隐晶质部分则主要由粒度小于1 μm的形状不规则的SiO2颗粒组成。紫外-可见光谱显示紫色主要来源于540 nm左右的吸收峰,而黄色则由于谱线“左倾”产生的近紫外区及蓝光区强烈吸收所致。紫外-可见光谱使用塞尔迈耶尔方程修正表面反射误差、减去无吸收波段强度矫正仪器误差,并用最小二乘平滑扣除基线得到540 nm吸收峰的强度信息。计算玉髓在反射光下的紫色调及透射光下的黄色调的L*a*b*值和E*值定量表征颜色。热处理实验中,玉髓的紫色调在350 ℃左右开始褪去,紫外-可见光谱390和540 nm吸收峰消失,反射光和透射光下颜色差异减小,都呈现黄色调。随温度升高至400 ℃后,棕色调加深,出现478 nm左右的吸收峰。热处理过程中谱线吸收强度升高,“左倾”加剧,峰位“红移”。该现象与铁/二氧化硅纳米粒子(Fe/SiO2 NPs)生长过程中的谱形变化相似,有可能与玉髓内部与Fe有关的微细结构或包裹体在热处理过程中的变化有关。颜色参数结合原位成分分析,将数据采用标准分数(Z-score)归一化处理,比对紫色调的E*值与540 nm吸收峰强度及元素含量之间的关系,发现540 nm吸收峰强度可很好的反映紫色的浓集程度,但紫色调与过渡金属元素含量的线性相关性却并不显著,黄色调的E*值则与Fe元素含量具有近似的负相关性。Fe并不以杂质矿物的形式存在,元素含量这一因素也并不能完全决定玉髓的颜色,可能还受到Fe在玉髓中的存在形式,内部微细结构或包裹体等因素的影响。  相似文献   
10.
祖母绿为绿柱石族中铬(Cr)、钒(V)共同致色的宝石种,合成历史悠久,技术不断改进,新配方产品不时出现。近期市场上出现一种新型水热法合成祖母绿,颜色亮丽,外观可与哥伦比亚天然祖母绿媲美,经初步分析发现其为V致色合成祖母绿。为了探究其特征,运用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)、紫外-可见-近红外(UV-Vis-NIR)分光光度计进行详细研究,旨在获得其化学成分中致色元素含量及UV-Vis-NIR吸收光谱特征,分析致色原因,并寻求与天然祖母绿的相区别的方法,为检测机构提供重要数据信息。化学成分研究表明,该合成祖母绿为纯V致色,具有富V贫铁(Fe)的特征,铜(Cu)在不同批次样品中,含量差别较大,而Cr及其他致色元素含量大多低于检测限。作为对比的传统富Fe型水热法合成祖母绿样品,则具有高Cr高Fe的特征。此外,含有较高的镍(Ni)及微量钛(Ti),锰(Mn),Cu,而V含量则低于检测限。新型合成祖母绿的紫外-可见吸收光谱呈现典型的钒元素的吸收光谱特征,在紫区430 nm、橙红区617 nm处显示两个宽大的吸收带。此外在约390和680 nm附近分别有一肩峰,多数样品在756 nm处有一弱吸收峰。430 nm吸收带归属于V3+的d电子[3T1g(3F)→3T1g(3P)]自旋允许跃迁,617 nm吸收带归属于V3+的d电子的3T1g(3F)→3T2g(3F)自旋允许跃迁,756 nm吸收峰为Cu2+所致,该吸收光谱特征与传统富Fe型合成祖母绿明显不同。天然祖母绿大多具Fe3+,Fe2+及Cr3+的吸收光谱组合特征,较容易与该合成祖母绿区分;少数纯V致色天然祖母绿,虽然同样具有V元素特征的吸收峰,但由于同时具有在810~830 nm附近Fe2+的特征吸收带,也能与富V型合成祖母绿区别。近红外区,主要在1 402,1 467和1 895 nm处显示I型水相关吸收峰,也可与天然祖母绿区别。紫外-可见-近红外光谱是鉴定天然祖母绿与合成祖母绿的一个有效手段,但要结合其他鉴定信息,如包裹体、分子振动光谱等,避免新合成配方祖母绿的出现而导致错误的鉴定结论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号