首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文采用一锅法合成了四芳基吡咯并[3,2-b]吡咯有机空穴输运材料(D41D42D43D44),制备出无掺杂的倒置型平面钙钛矿太阳电池. 材料D41的芳环上含有甲基,具有供体-π-给体-π-供体结构;而D42D43D44具有受体-π-给体-π-受体结构,其中,芳环上分别含有氰基、氟和三氟甲基. 研究表明,芳环上取代基对其分子表面电荷分布和空穴输运层薄膜形貌有显著影响,钙钛矿晶体颗粒的大小与空穴输运材料分子结构有关,含有氰基的材料D42最有利于形成较大的钙钛矿晶粒,这主要是由于吡咯并[3,2-b]吡咯结构具有丰富的电子性质的缘故. D42制备的倒置型平面钙钛矿太阳电池光电转换效率为17.3%,在黑暗条件下22天后,仍保留了初始效率的55%. 吡咯并[3,2-b]吡咯结构具有良好的给电子特性,可作为高效钙钛矿薄膜的空穴传输材料.  相似文献   

2.
李宗宝  王霞  周瑞雪  王应  李勇 《物理学报》2017,66(11):117101-117101
因在温室气体的降解中扮演重要的角色,通过改性来提高二氧化钛的光催化性能的相关研究备受关注.由于催化反应主要发生在材料表面,因此对材料表面的改性研究尤为重要.本文采用第一性原理方法计算了金属Ag,Cu单掺杂及协同掺杂TiO_2(001)和(101)表面不同位置,通过形成能的比较获得了最稳定的晶体结构.通过对能带及态密度的对比得出:离子掺杂(001)表面所形成的活性基团的氧化性较(101)面更强,利于光催化氧化性能的提升;表面协同掺杂较单掺杂具有更强的光响应效率,与前人的实验结果符合较好.  相似文献   

3.
研究了铈掺杂及沉淀方法对铜锰氧化物催化剂的结构特性及室温催化氧化CO性能的影响. 使用X射线衍射、N2吸附脱附、等离子体发射光谱、程序升温还原、紫外可见漫反射以及X射线光电子能谱等手段对各催化剂进行了表征. 发现掺杂少量的铈于铜锰氧化物催化剂中,CeO2相高度分散并能阻止催化剂的烧结和团聚,所制得的催化剂的颗粒较小,氧化还原性能提高,比表面增大,并形成了较多的活性位点,使其对CO的催化氧化性能明显提高.  相似文献   

4.
表面增强拉曼光谱(SERS)具有无与伦比的光谱性能,因此在分析化学、催化等领域得到了广泛的关注,在适当的条件甚至可以做到单分子水平检测。SERS可以得到分子的振动能级信息,而且具有很高的灵敏度和选择性,尤其在表面、界面研究方面具有较大的优势。因此我们制备了具有较好催化性能的TiO_2,在它的表面沉积了贵金属Ag,然后再掺杂g-C_3N_4,形成g-C_3N_4/Ag/TiO_2复合催化剂。通过修饰和掺杂,催化剂的吸收从紫外区移动到可见区,同时光生载流子受到了抑制,因此材料的催化性能得到了提高。我们以RhB染料作为探针分子,用SERS研究了该分子的催化降解过程。  相似文献   

5.
利用磁控溅射分层制备Ag和SiO2薄膜,通过快速热处理,使Ag颗粒富集在复合薄膜的表面.研究了Ag膜层厚度、退火时间、退火温度和退火方式对Ag颗粒形貌的影响,以及Ag颗粒致密度对其共振吸收的影响.结果表明:通过控制每层Ag膜的厚度,可有效控制Ag颗粒形貌.当每层金属为2 nm、退火温度为500 ℃时,形成的颗粒粒径大小均匀且致密度较高.通过间断退火可有效降低Ag颗粒的粒径.发现Ag颗粒表面等离子共振吸收并没有随颗粒粒径的减小而明显降低,甚至提高.这和以往的报道不同.通过深入研究金属颗粒表面等离子体产生机理,发现其表面等离子共振吸收增强的原因是致密度较高的颗粒表面能级与费米能级差值较大,Ag颗粒内部的电子向颗粒表面迁移越多,形成新的费米能级E'F的电子数就越多,表面等离子共振吸收就越强.最终得出了金属颗粒共振吸收不单纯依赖于金属粒径、和颗粒的致密度也有很大关系的结论.  相似文献   

6.
从实验和理论两个方面,探讨了金属Ag不同掺杂浓度对Ag:Bi2O3复合膜线性和非线性光学性质的影响.用吸收光谱研究了Ag浓度与Ag:Bi2O3复合膜表面等离子体共振带之间的关系;用皮秒Z-扫描技术研究了共振和非共振情况下(激发光波长分别为532 nm和1064 nm),金属Ag浓度与复合膜三阶非线性极化率的关系.基于表面等离子体共振理论和局域场增强理论对复合膜进行了分析,得到了不同Ag浓度时Ag:Bi2O3复合膜的三阶非线性效应,研究了激发波长和金属浓度对复合膜线性和非线性光学性质的影响.结果表明,等离子体共振增强和合适的金属掺杂浓度使得三阶极化率增强二个量级,在Ag浓度为35%左右和接近等离子体共振频率(相应吸收带位于560 nm-622 nm)的532 nm激发时,χ(3)具有最大值2.4×10-9esu.  相似文献   

7.
从实验和理论两个方面,探讨了金属Ag不同掺杂浓度对Ag:Bi2O3复合膜线性和非线性光学性质的影响. 用吸收光谱研究了Ag浓度与Ag:Bi2O3复合膜表面等离子体共振带之间的关系;用皮秒Z-扫描技术研究了共振和非共振情况下(激发光波长分别为532nm和1064nm),金属Ag浓度与复合膜三阶非线性极化率的关系. 基于表面等离子体共振理论和局域场增强理论对复合膜进行了分析,得到了不同Ag浓度时Ag:Bi2O3复合膜的三阶非线性效应,研究了激发波长和金属浓度对复合膜线性和非线性光学性质的影响. 结果表明,等离子体共振增强和合适的金属掺杂浓度使得三阶极化率增强二个量级,在Ag浓度为35%左右和接近等离子体共振频率(相应吸收带位于560nm—622nm)的532nm激发时,χ(3)具有最大值2.4×10-9esu. 关键词: 金属纳米颗粒 复合膜 三阶非线性 表面等离子体共振  相似文献   

8.
本文以磷酸为磷源,通过溶胶水热法制备磷掺杂TiO_2,利用Lee和Meisel的方法制备银溶胶,以4-巯基苯甲酸(MBA)为探针分子,通过构建TiO_2/MBA/Ag三明治结构,研究磷掺杂二氧化钛对该基底表面增强拉曼(SERS)性能的提升。通过TEM、XRD、XPS、DRS和拉曼光谱图表征二氧化钛的形貌结构、化学组成、光学和拉曼性能,结果表明,制备出的磷掺杂二氧化钛为锐钛矿型纳米颗粒,粒径范围6~12nm,XPS显示磷以P~(5+)替代了Ti~(4+),形成O-P-O键掺入TiO_2的晶格中,当磷的掺杂量在1.77%时,TiO_2/MBA/Ag三明治体系具有最佳的SERS信号,这是因为适量的磷掺杂降低了TiO_2的能带间隙,丰富TiO_2的表面态,这能促进TiO_2向MBA分子的电荷转移。  相似文献   

9.
采用磁控溅射法在Si衬底上制备了SiO2介质膜,系统地研究了SiO2膜引入对Ag纳米颗粒的表面覆盖率、形貌、形成机理和光学性质的影响.研究发现引入SiO2介质膜后,Ag纳米颗粒的表面覆盖率显著增加,平均粒径明显降低.基于现有的Ag纳米颗粒形成机理,提出了粗糙表面Ag膜断裂模型以解释其形貌发生变化的原因.紫外-可见光分光光度计测试表明,引入SiO2膜并优化其厚度,可使Ag纳米颗粒的偶极消光峰最大红移86nm,但消光峰强度明显下降.数值模拟计算表明,引入SiO2膜的Ag纳米颗粒所能散射的光子数量最小减少2×1018个.因此,在Si衬底上沉积SiO2膜,不利于Ag纳米颗粒陷光性能的提高.  相似文献   

10.
采用基于密度泛函理论的第一性原理方法和超原胞模型,计算并分析了Pt及Cu掺杂的Pt基合金的表面态密度,以及S在Pt及Pt基合金表面的吸附能和态密度情况.考虑了多种掺杂体系及吸附构型,结果表明:Cu掺杂会降低Pt基体系表面费米能级附近态密度,Pt皮肤的存在可以有效地减小Cu掺杂对体系表面态密度的影响;与S在纯Pt表面吸附相比较,S在掺杂体系表面的吸附能较小,且S的吸附对掺杂体系费米能级附近表面态密度影响较小. 以上研究结果有助于为改善Pt基电极材料的催化性能,尤其是其抗S中毒性能提供理论依据.  相似文献   

11.
A simple and low cost method to generate single-crystalline, well-aligned silicon nanowires (SiNWs) of large area, using Ag-assisted electroless etching, is presented and the effect of differently sized Ag catalysts on the fabrication of SiNWs arrays is investigated. The experimental results show that the size of the Ag catalysts can be controlled by adjusting the pre-deposition time in the AgNO3/HF solution. The optimum pre-deposition time for the fabrication of a SiNWs array is 3 min (about 162.04 ± 38.53 nm Ag catalyst size). Ag catalysts with smaller sizes were formed in a shorter pre-deposition time (0.5 min), which induced the formation of silicon holes. In contrast, a large amount of Ag dendrites were formed on the silicon substrate, after a longer pre-deposition time (4 min). The existence of these Ag dendrites is disadvantageous to the fabrication of SiNWs. Therefore, a proper pre-deposition time for the Ag catalyst is beneficial to the formation of SiNWs.SiNWs were synthesized in the H2O2/HF solution system for different periods of time, using Ag-assisted electroless etching (pre-deposition of the Ag catalyst for 3 min). The length of the SiNWs increases linearly with immersion time. From TEM, SAED and HRTEM analysis, the axial orientation of the SiNWs is identified to be along the [001] direction, which is the same as that of the initial Si wafer. The use of HF may induce Si–Hx bonds onto the SiNW array surface. Overall, the Ag-assisted electroless etching technique has advantages, such as low temperature, operation without the need for high energy and the lack of a need for catalysts or dopants.  相似文献   

12.
The direct epoxidation of propylene to propylene oxide (PO) using molecular oxygen is an attractive alternative to current production methods using chlorohydrin or hydroperoxide-mediated processes, which are environmentally harmful and expensive. Although direct ethylene epoxidation using Ag-based catalysts has been practiced industrially for decades, due to the presence of allylic hydrogen in propylene the selectivity toward epoxide is generally much lower for propylene than for ethylene. Mechanistic understanding on well-characterized surfaces of model catalysts can potentially provide guidance to effectively alter the electronic properties of the catalyst in order to increase PO selectivity. This review summarizes both experimental and theoretical studies on model catalysts for propylene epoxidation and their contributions to elucidating the reaction mechanism, intermediates, and active sites. We first show examples of experimental studies on Cu, Ag, and Au surfaces, and compare the reaction pathways and intermediates on these surfaces. Novel approaches including plasmon-mediated catalysis and utilization of shape-controlled crystal facets that open new opportunities for improving PO selectivity will also be discussed. We then describe how density functional theory (DFT) calculations have provided important insights into the reaction mechanism and active sites on Cu, Ag, and Au surfaces and clusters. Propylene oxidation pathways on other relevant metal surfaces will also be discussed. The combined experimental and computational studies elucidate the nature of surface oxygen species and the role of the oxametallacycle intermediate. We conclude by highlighting design principles and insights for guiding further development of active and selective propylene epoxidation catalysts.  相似文献   

13.
Single-walled carbon nanotubes (SWCNTs) are shown to grow rapidly on iron oxide catalysts on the fuel side of an inverse ethylene diffusion flame. The pathway of carbon in the flame is controlled by the flame structure, leading to formation of SWCNTs free of polycyclic aromatic hydrocarbons (PAH) or soot. By using a combination of oxygen-enrichment and fuel dilution, fuel oxidation is favored over pyrolysis, PAH growth, and subsequent soot formation. The inverse configuration of the flame prevents burnout of the SWCNTs while providing a long carbon-rich region for nanotube formation. Furthermore, flame structure is used to control oxidation of the catalyst particles. Iron sub-oxide catalysts are highly active toward SWCNT formation while Fe and Fe2O3 catalysts are less active. This can be understood by considering the effects of particle oxidation on the dissociative adsorption of gas-phase hydrocarbons. The optimum catalyst particle composition and flame conditions were determined in near real-time using a scanning mobility particle sizer (SMPS) to measure the catalyst and SWCNT size distributions. In addition, SMPS results were combined with flame velocity measurement to measure SWCNT growth rates. SWCNTs were found to grow at rates of over 100 μm/s.  相似文献   

14.
In the present work, carbon-supported Pt–Sn, Pt–Ru, and Pt–Sn–Ru electrocatalysts with different atomic ratios were prepared by alcohol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cells. The synthesized electrocatalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses. The prepared catalysts had similar particle morphology, and their particle sizes were 2–5 nm. The electrocatalytic activities were characterized by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results obtained at room temperature showed that the addition of Sn and Ru to the pure Pt electrocatalyst significantly improved its performance in ethanol electro-oxidation. The onset potential for ethanol electro-oxidation was 0.2 V vs. Ag/AgCl, in the case of the ternary Pt–Sn–Ru/C catalysts, which was lower than that obtained for the pure Pt catalyst (0.4 V vs. Ag/AgCl). During the experiments performed on single membraneless fuel cells, Pt ? Sn ? Ru/C (70:10:20) performed better among all the catalysts prepared with power density of 36 mW/cm2. The better performance of ternary Pt–Sn–Ru/C catalysts may be due to the formation of a ternary alloy and the smaller particle size.  相似文献   

15.
Sequentially precipitated Mg-promoted nickel-silica catalysts with ageing performed under various ultrasonic intensities were employed to study the catalyst performance in the partial hydrogenation of sunflower oil. Results from various characterisation studies showed that increasing ultrasonic intensity caused a higher degree of hydroxycarbonate erosion and suppressed the formation of Ni silicates and silica support, which improved Ni dispersion, BET surface area and catalyst reducibility. Growth of silica clusters on the catalyst aggregates were observed in the absence of ultrasonication, which explained the higher silica and nickel silicate content on the outer surface of the catalyst particle. Application of ultrasound also altered the electron density of the Ni species, which led to higher activity and enhanced product selectivity for sonicated catalysts. The catalyst synthesised with ultrasonic intensity of 20.78 Wcm−2 achieved 22.6% increase in hydrogenation activity, along with 28.5% decrease in trans-C18:1 yield at IV = 70, thus supporting the feasibility of such technique.  相似文献   

16.
The dissociative adsorption of ethylene (C2H4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges.DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces.The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms.Finally a high surface area NiAg alloy catalyst supported on MgAl2O4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.  相似文献   

17.
本文以Co-BTC金属有机框架材料为前驱体,采用连续离子交换法和进一步的高温水热处理来合成片状Ag-CoSO4复合纳米材料. 由于少量Ag的引入有利于增强导电性并加速电子转移过程,该催化剂在1 mol/L KOH电解质溶液中表现出优异的OER性能(在10 mA/cm2的电流密度下过电位仅为282 mV),其性能甚至比RuO2更好. 催化剂中Ag的存在有利于促进Co(IV)的产生进而提高Co(IV)浓度,并且能够调控对氧物种的吸附能而促进OER过程*OOH中间物质的形成,加速了析氧反应过程的进行. 极低含量Ag的使用(低于百分之一原子含量)使得催化剂的成本极大的降低.  相似文献   

18.
The effects of surface acoustic wave (SAW) and resonance oscillation (RO) of bulk acoustic waves on the catalysis of metals were studied in an attempt to design a catalyst surface with artificially controllable functions for chemical reactions. In ethanol decomposition on a thin Cu film catalyst deposited on the propagation path of a shear horizontal leaky SAW, the SAW-on increased the activity for ethylene production remarkably but a little for acetaldehyde production. A poled ferroelectric z-cut LiNbO3 with a thickness extensional mode RO (TERO) and a x-cut LiNbO3 with a thickness shear mode RO (TSRO) were employed as a substrate, on which a thin Ag film catalyst was deposited. For ethanol decomposition, TERO increased ethylene production activity and the selectivity for ethylene production from 79 to 96%, whereas TSRO caused little activity enhancement for both ethylene and acetaldehyde production. The combination with the results of laser Doppler measurements showed that the activity enhancement and selectivity changes with SAW and RO of the acoustic waves are associated with dynamic large lattice displacement vertical to the surface.  相似文献   

19.
The kinetic parameters of the Fischer–Tropsch synthesis (FTS) on iron catalyst are analyzed by size-dependent thermodynamic method. A Langmuir–Hinshelwood kinetic equation is considered for evaluation of catalytic activity of lanthanum promoted iron catalyst. A series of unsupported iron catalysts with different particle sizes were prepared via microemulsion method. The experimental results showed that catalyst activity pass from a maximum value by increasing the iron particle size. Also, data presented that iron particle size has considerable effects on adsorption parameters and FTS rates. The ratio of surface tension (σ) to nanoparticle radius (r) is important in FTS reaction on iron catalyst. Finally, the results showed that by increasing of iron particle size from 18 to 45 nm the activation energies of catalysts and heats of adsorption of catalysts as two main parameters of FTS reaction increased from 89 to 114 kJ/mol and from 51 to 71 kJ/mol, respectively.  相似文献   

20.
Mixture of carbon black, copper and lead was used as catalyst of high-content RDX-composite-modified double base propellant. To enhance the catalytic effect and improve the flaring performance, metal oxide deposited on carbon nanotubes (CNTs) are replaced with afore-mentioned catalyst. A new type of nano-combustion catalyst is synthesized with microemulsion process. In present work, ternary diagram was adopted to analyze the essential factors which affect microemulsion, including temperature, surfactant or cosurfactant and concentration of solution in order to find the best technical parameters and thus to control the core formation and growth of oxides on the nano-template. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are applied to characterize the products. Through observation of microstructures and analysis of crystal structure, it is confirmed that nano-oxides are deposited on the surface of carbon nanotubes. Its particle size is below 50 nm. According to propellant components, a certain amount of combustion catalyst and RDX will be mixed. PbO·CuO/CNTs can catalyze thermal decomposition of RDX by thermal analysis. The results show that the new catalysts obviously accelerate the decomposition of RDX, and the peak temperature of decomposition reduce by 14.1 °C. The catalytic effect of nano-catalyst is better than original catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号