首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
微波加热法快速制备纳米金及其SERS活性表征   总被引:1,自引:0,他引:1  
本文采用微波快速加热法,利用柠檬酸钠还原氯金酸的原理,成功还原出粒径从10nm到60nm的酒红色金溶胶。我们用此加热法对比不同加热时间以及不同还原剂的用量条件下制备出的多种粒径金溶胶,并用吸收光谱、透射电镜和拉曼光谱对其SERS活性进行表征,选择R6G、4-MBA和结晶紫作为探针分子对其进行SERS活性研究。结果表明,随着加热时间或还原剂量的增加,金纳米粒子的粒径会逐渐减小,在适宜加热时间与还原剂用量的条件下所制备的纳米金溶胶稳定性较好,将其浓缩后是一种非常有效的SERS活性基底。微波加热方法简单、价格低廉,此种胶体可作为理想的SERS活性基底进行批量制备与应用。  相似文献   

2.
以三乙醇胺为还原剂,乙二醇溶液为反应溶液,在红外光波条件下制备了稳定性较好的金纳米溶胶。并对新制成的金纳米粒子的紫外可见吸收、共振瑞利散射(RRS)、表面增强拉曼散射(SERS)对其进行了研究。  相似文献   

3.
不同形状的金纳米粒子在表面增强拉曼散射(surface enhanced Raman scattering,SERS)中有不同的增强效果,多面体金纳米粒子具有多角结构,显示出比金纳米板更为明显的增强效果,近年来对其合成和性质的研究备受关注。该研究探究了十二面体,二十面体,三角板,球形四种形状的金纳米粒子在SERS中不同的增强效果。分别采用硼氢化钠还原法和以N,N-二甲基甲酰胺(DMF)为还原剂制备金三角纳米片和二十面体金纳米粒子,又以二十面体金纳米粒子为种子制备出十二面体金纳米粒子,并分别以以上三种不同形貌的金纳米粒子及球形金溶胶为基底,4-巯基吡啶,对巯基苯甲酸为探针分子检测了其在不同激发波长下的增强效果。透射电子显微镜结果表明金三角纳米板的平均边长为130nm,二十面体和十二面体金纳米粒子的粒径分别为100和120nm。三者的紫外可见吸收峰分别在589,598和544nm处。表面增强拉曼散射结果表明金多面体比金三角纳米板表现出更好的增强效果。  相似文献   

4.
汤建  刘爱萍  李培刚  沈静琴  唐为华 《物理学报》2014,63(10):107801-107801
采用Frens法制备金纳米粒子溶胶,通过界面自组装技术在掺磷的非晶碳衬底表面构筑三维的金/氧化石墨烯/金复合结构.以罗丹明B为探针分子,考察金/氧化石墨烯/金复合材料的表面增强拉曼散射活性.结果表明,由于氧化石墨烯的化学增强和金纳米粒子的电磁场增强的协同作用,在该三维复合材料上获得了很强的罗丹明B拉曼信号.所设计的三维金/氧化石墨烯/金复合材料在生物分析、环境监测、疾病防控、食品安全等领域具有潜在的应用价值.  相似文献   

5.
SERS标记免疫金溶胶的影响因素研究   总被引:4,自引:2,他引:2  
将表面增强拉曼光谱(SIERS)的高度灵敏性应用于标记免疫检测,具有很大的意义。在“固相抗体-待测抗原-标记抗体”夹心复合物体系中,以(SERS)标记的金溶胶与抗体结合,制备标记抗体。以芳香族化合物苯硫酚为标记分子,与一定大小粒径的金纳米粒子形成S-Au键,生成带有SERS信号的标记金溶胶。表面带负电荷的标记金溶胶与带有正电荷基团的抗体形成牢固的标记免疫金溶胶。从金纳米粒子粒径的选择、在金溶胶中加入苯硫酚的量及反应时间、抗体对标记金溶胶标记分子的SERS信号的影响进行了研究。  相似文献   

6.
本文采用湿化学方法制备具有表面增强拉曼散射活性的氧化石墨烯负载纳米金溶胶:通过以柠檬酸三钠为还原剂,在没有稳定剂、温和的液相反应条件下,同时还原氯金酸和深度氧化的石墨烯,原位制备氧化石墨烯负载金纳米颗粒复合物。利用紫外可见分光光度计、激光粒度分析仪、傅里叶变换红外吸收光谱仪、透射电子显微镜对所制得的氧化石墨烯负载金纳米颗粒复合物进行了表征和分析,并且采用拉曼光谱研究其作为增强试剂的性能。结果表明:所得溶胶在波长为540nm左右存在较强的吸收峰,粒径分布在50nm附近范围内;生成的金纳米粒子的大小及其分布受氯金酸用量的影响,并且粒径分布均匀,金纳米颗粒的平均尺寸为20nm,大量金纳米颗粒均匀地附着在氧化石墨烯的片层之间;氧化石墨烯的含氧官能团大幅降低,氧化石墨烯表面基团大部分被还原;以R6G为探针分子验证其拉曼增强效应,在浓度低至10nmol/L时依然具有较强的拉曼信号,增强因子达到2.4×10~5。所以高分散性、高稳定性的氧化石墨烯负载金颗粒溶胶,可作为SERS活性基底(增强试剂),用于快速检测。  相似文献   

7.
史娜娜  赵艳  冯超  黄杰  徐佳宇 《物理学报》2017,66(8):86101-086101
金纳米星是一种具有尖状结构的多分枝纳米颗粒.为了使金纳米星枝杈长度可控,利用HEPES作为体系的还原剂、稳定剂及形状诱导剂,在制备过程中进行光辐照,得到的金纳米星枝杈长度比无光辐照时的金纳米星枝杈长度短,而且不同波长光辐照得到的金纳米星枝杈长度有显著不同.在此基础上,分析了金纳米星枝杈长度变化的物理过程,提出光诱导金纳米星生长过程中枝杈长度变化的理论模型.测量了不同枝杈长度的金纳米星在光辐照下一定时间内的温度变化,计算了金纳米星的光热转换效率.实验结果表明,光辐照制备金纳米星能够精确控制金纳米星枝杈长度范围,从而调控金纳米星的光热转换效率.  相似文献   

8.
葡萄糖能还原氯金酸合成金纳米粒子,但所需制备时间较长。本文采用化学还原法,在光波加热条件下还原HAuCl4制备金纳米粒子溶胶。本实验优化了NaOH和葡萄糖等条件,合成了稳定的具有高SERS活性的金纳米溶胶,并研究了其光谱特性。  相似文献   

9.
以氯金酸为原料,抗坏血酸为还原剂,柠檬酸钠为保护剂,用化学还原(种子生长)法制备了不同粒径、超均匀的球形金纳米粒子溶胶,并通过紫外可见吸收光谱(UV-Vis)和扫描电子显微镜(SEM)进行表征。结果表明,随着金纳米粒子粒径的增大,其UV-Vis光谱中的吸收峰发生红移并出现四极峰。为进一步研究金纳米粒子表面增强拉曼散射(SERS)效应的作用机理并优化其灵敏度,我们以罗丹明6G(R6G)为探针分子,对不同粒径的金纳米粒子进行SERS表征,发现R6G的SERS信号随着金纳米粒子的增大先增强后减弱。当金纳米粒子的平均粒径达到120 nm时,产生最强SERS信号增强,增强因子约为1.1×107。三维时域有限差分法(3D-FDTD)理论模拟纳米粒子阵列电磁场分布结果与实验数据的趋势一致。  相似文献   

10.
通过溶胶-水热法合成TiO_2纳米粒子,然后采用光催化还原法通过改变氯金酸(HAuCl4)水溶液浓度和光照时间等参数制备不同量Au沉积的TiO_2(Au-TiO_2)纳米复合体,并以其作为SERS活性基底对吸附在其表面的探针分子(4-MBA)进行SERS研究。与纳米TiO_2上本征的SERS增强相比,适量的Au沉积导致复合基底对4-MBA分子具有更强的SERS增强效应,4-MBA的SERS信号增强来源于贵金属和半导体的共同作用;制备复合基底的光还原时间和氯金酸的浓度对复合基底的SERS增强效应均具有重要的影响。  相似文献   

11.
A significant shift of the surface plasmon resonance absorption spectrum of gold nanoparticles was obtained by the oxidation of the nanoparticle surface via pulsed excimer laser irradiation. The high UV-light absorption of gold nanoparticles chemically produced by citrate reduction led to the important surface oxidation up to 26%. As a result of laser irradiation, the gold/gold oxide core-shell nanoparticles with little variation of the nanoparticle size were produced. After only 5 min of laser irradiation, a 12-nm blue shift in surface plasmon resonance was obtained. The possible mechanisms governing the modification in surface plasmon resonance by laser irradiation of gold nanoparticles were discussed.  相似文献   

12.
By simple grinding, water-soluble linear polymers poly(4-vinylpyridine) (PVP) wrapped around multiwalled carbon nanotubes (MWCNTs) and thus rendered them reversibly soluble in water, ethanol, and DMF. The structure and properties of the resulting nanocomposite, CNTs wrapped by PVP, were evaluated by SEM, AFM, TGA, and FTIR spectroscopy. Individual tubes are clearly observed after PVP-wrapped nanotubes were spin-coated onto a silicon wafer as determined by SEM and AFM. Subsequently, a novel and facile approach to attach high-density and uniform size gold nanoparticles on individual multiwalled carbon nanotubes was achieved by in situ reduction of HAuCl4 in the homogeneous aqueous solution of MWCNTs–PVP.  相似文献   

13.
CdS nanocrystals with different structures were synthesized by the method of solution precipitation using thiourea and cadmium acetate as starting materials in different solvents: water, methanol and N,N-dimethylformamide (DMF). Our results show that the solvent has direct effect on the structure and size of the final nanoparticles. It was found that using DMF, as a solvent, results in producing smaller nanoparticles with the cubic structures, while using the other solvents gives rise to larger nanoparticles with the hexagonal structure. It was also found that using heat during washing the precipitate results in a more homogenous size distribution of CdS nanocrystals. On the basis of our experimental results we also suggest a critical structure transformation size.  相似文献   

14.
Hydrophobically modified chitosan/gold nanoparticles for DNA delivery   总被引:1,自引:0,他引:1  
Present study dealt an application of modified chitosan gold nanoparticles (Nac-6-Au) for the immobilization of necked plasmid DNA. Gold nanoparticles stabilized with N-acylated chitosan were prepared by graft-onto approach. The stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-vis, TEM, ELS and DLS. MTT assay was used for in vitro cytotoxicity of the nanoparticles into three different cell lines (NIH 3T3, CT-26 and MCF-7). The formulation of plasmid DNA with the nanoparticles corresponds to the complex forming capacity and in-vitro/in-vivo transfection efficiency was studied via gel electrophoresis and transfection methods, respectively. Results showed the modified chitosan gold nanoparticles were well-dispersed and spherical in shape with average size around 10~12 nm in triple distilled water at pH 7.4, and showed relatively no cytotoxicity at low concentration. Addition of plasmid DNA on the aqueous solution of the nanoparticles markedly reduced surface potential (50.0~66.6%) as well as resulted in a 13.33% increase in hydrodynamic diameters of the formulated nanoparticles. Transfection efficiency of Nac-6-Au/DNA was dependent on cell type, and higher β-galactosidase activity was observed on MCF-7 breast cancer cell. Typically, this activity was 5 times higher in 4.5 mg/ml nanoparticles concentration than that achieved by the nanoparticles of other concentrations (and/or control). However, this activity was lower in in-vitro and dramatically higher in in-vivo than that of commercially available transfection kit (Lipofectin®) and DNA. From these results, it can be expected to develop alternative new vectors for gene delivery.  相似文献   

15.
We reported a facile method for preparing self-assembly gold nanochains by using insulin fibrils as biotemplate in aqueous environment. The gold nanochains hybrid nanostructures, which are insulin fibrils coated by gold nanoparticles, can be fabricated by simply reducing the salt precursors using DMAB. By increasing the molar ratio between salt precursors and insulin, denser hybrid nanochains can be obtained, meanwhile the mean diameter of gold nanoparticles is changing from 8 to 10 nm and then to 12 nm. The fabricated gold nanochains hybrid had helix structure, which was confirmed by circular dichroism spectra. The hybrid nanostructures were also investigated by transmission electron microscope, atomic force microscope, Fourier transform infrared spectra, and UV–Visible spectroscopy. As the wire-like structure become denser, the suspensions show color-changing, corresponding to the surface plasmon resonance red shift, which is attributed to the increasing mean size of nanoparticles. Based on the characterizations, a hypothetic mechanism was suggested to describe the formation processing of hybrid gold nanochains.  相似文献   

16.
We have measured the first hyperpolarizabilities of thioalkane capped silver and gold metallic nanoparticles. The values found are β(AgC 12-10 nm) = (2.10 ± 0.23) × 10(-26) esu for 10 nm diameter silver nanoparticles and β(AuC 18-18 nm) = (3.37 ± 0.08) × 10(-26) esu for 18 nm diameter gold nanoparticles at the fundamental wavelength of 784 nm. By comparison to the corresponding values reported for citrate capped silver and gold metallic nanoparticles, after size corrections, decreases by factors of 4.3 and 6.5 respectively are observed. These decreases are tentatively attributed to the bonds formed between the gold and silver surface atoms and the sulfur atoms of the capping layer.  相似文献   

17.
Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.  相似文献   

18.
采用水相硅烷化方法,将γ-氨基丙基三乙氧基硅烷[H2N(CH2)3Si(OC2H5)3](APES)组装在石英表面,在基底表面修饰上氨基为末端的单层膜,并进一步在这种功能化的单层膜基底上组装金纳米粒子得到金纳米粒子/APES/石英的纳米复合结构。以制备的金纳米粒子自组装膜修饰石英为基底及DL-半胱胺酸为中介,利用桑色素(Morin)和DL-半胱胺酸的化学吸附作用,将桑色素间接组装在金纳米粒子自组装膜修饰石英基底表面,所构建的桑色素修饰金纳米粒子自组装膜对三苯基锡有灵敏的荧光识别作用。文章着重研究了桑色素修饰金纳米粒子自组装膜的制备以及组装条件对其荧光行为的影响,探讨了膜的响应特性及响应机理。  相似文献   

19.
Stable gold nanoparticles have been prepared by using soluble starch as both the reducing and stabilizing agents; this reaction was carried out at 40 °C for 5 h. The obtained gold nanoparticles were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy (TEM) and z-scan technique. The size of these nanoparticles was found to be in the range of 12–22 nm as analyzed using transmission electron micrographs. The optical properties of gold nanoparticles have been measured showing the surface plasmon resonance. The second-order nonlinear optical (NLO) properties were investigated by using a continuous-wave (CW) He–Ne laser beam with a wavelength of 632.8 nm at three different incident intensities by means of single beam techniques. The nonlinear refractive indices of gold nanoparticles were obtained from close aperture z-scan in order of 10?7 cm2/W. Then, they were compared with diffraction patterns observed in far-field. The nonlinear absorption of these nanoparticles was obtained from open aperture z-scan technique. The values of nonlinear absorption coefficient are obtained in order of 10?1 cm/W.  相似文献   

20.
We presented a controlled particles‐in‐cavity (PIC) pattern for surface‐enhanced Raman scattering (SERS) detection. The periodic gold cavity array was fabricated by electrodeposition using highly ordered polystyrene spheres as a template. The as‐prepared gold cavities can be used as a SERS active substrate with significant spectral enhancement and reproducibility, which was evaluated by SERS signals using 4‐mercaptobenzoic acid (4‐MBA) as probe molecules. The surface of these gold cavities was further functionalized with cetyltrimethylammonium bromide molecules, which may immobilize the 4‐MBA‐modified silver nanoparticles in the gold cavity to form a PIC structure via the electrostatic interaction. We have demonstrated that there exists a pH window for the immobilization of the nanoparticles inside cavities. Therefore, the silver nanoparticles can be selectively immobilized into the functionalized gold cavities under the optimized pH value of the media. Further enhancement of the Raman scattering of the labeled molecules can be achieved due to the interconnection between the silver nanoparticles and gold cavity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号