首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report surface‐enhanced Raman studies on intact plant material using onion layers as a biological target, and silver nanoaggregates and silver island films as enhancing plasmonic structures. Surface‐enhanced Raman scattering (SERS) enhancement allows the detection of strong Raman signatures of chemical constituents of the surface of the onion layer such as cellulose, proteins, and flavonols. Because of long‐time incubation, SERS sensors can access the extracellular space in the inner of the layer. The location of silver nanoparticles inside the onion layer has been monitored by the SERS images collected from chemicals present in the onion and/or reporter molecules attached to the nanoparticles. Our studies show a competitive adsorption of intrinsic bio molecules of the onion layer and reporter molecules. Different spectra from different places of the layer indicate the complex heterogeneous chemical structure of the plant material. The pH‐sensitive reporter molecule para mercapto benzoic acid attached to the nanoparticles allows us to infer pH values inside the extracellular matrix of the onion layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Surface‐enhanced Raman scattering (SERS) on silver and gold colloid gels formed by a low molecular weight organic gelator, bis‐(S‐phenylalanine) oxalyl amide, was obtained. Strong Raman signals dominate in the SERS spectra of hydrogels containing silver nanoparticles prepared by citrate and borohydride reduction methods, whereas broad bands of low intensity are detected in the spectra of gold colloid gels. Resemblance between Raman spectrum of the crystalline substance and the SERS spectra of the silver nanoparticle–hydrogel composites implies the electromagnetic nature of the signal enhancement. A change in Raman intensity of the benzene and amide II bands caused by an increase in temperature and concentration indicates that the gelling molecules are strongly attached through the benzene moieties to the metal nanoparticles while participating in gel formation by intermolecular hydrogen bonding between the adjacent oxalyl amide groups. Transmission electron microscopy reveals a dense gel structure in the close vicinity of the enhancing metal particles for both silver colloid gels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
During surface‐enhanced Raman scattering (SERS), molecules exhibit a significant increase in their Raman signals when attached, or in very close vicinity, to gold or silver nanostructures. This effect is exploited as the basis of a new class of optical labels. Here we demonstrate robust and sensitive SERS labels as probes for imaging live cells. These hybrid labels consist of gold nanoparticles with Rose Bengal or Crystal Violet attached as reporter molecules. These new labels are stable and nontoxic, do not suffer from photobleaching, and can be excited at any excitation wavelength, even in the near infrared. SERS labels can be detected and imaged through the specific Raman signatures of the reporters. In addition, surface‐enhanced Raman spectroscopy in the local optical fields of the gold nanoparticles also provides sensitive information on the immediate molecular environment of the label in the cell and allows imaging of the native constituents of the cell. This is demonstrated by images based on a characteristic Raman line of the reporter as well as by displaying lipids based on the SERS signal of the C H deformation/bending modes at ∼1470 cm−1. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
通过表面增强拉曼散射(SERS)技术和密度泛函理论(DFT)研究对巯基苯甲酸自组装在电化学沉积的金和银薄膜表面的吸附行为.结果表明电化学沉积的金和银薄膜是良好的SERS活性基底. 通过对巯基苯甲酸的SERS光谱分析和DFT理论计算,以及表面选择定则,得到了对巯基苯甲酸主要通过羧基自组装在电化学沉积银膜表面,并且苯环表面可能和银表面有一倾角,对巯基苯甲酸主要通过硫原子和金表面相互作用,并且苯环平面可能和金膜表面有一个倾角  相似文献   

5.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Metal pellets of silver and copper for surface‐enhanced Raman scattering (SERS) spectroscopy were prepared by compression with different pressures. It was found that the SERS activity of the pellet could be controlled by pressure. Enhanced Raman scattering properties of the metal pellets in the presence of adsorbed 4‐mercaptobenzoic acid (4‐MBA) with excitation at 632.8 or 514 nm could be obtained by choosing proper pressure of pellatization. The SERS peak intensity of the band at ∼1584 cm−1 of 4‐MBA adsorbed on the metal pellets varies as a function of applied pressure, and which is about 1.2–32 times greater than when it is adsorbed on silver and copper particles. The calculated results of three‐dimensional finite‐difference time‐domain method (3D‐FDTD) are in good agreement with the experimental data. Moreover, no spurious peaks appear in the SERS spectra of the samples because no other chemicals are involved in the simple preparation process of the metal pellets, which will facilitate its use as an SERS‐active substrate for analytical purposes. In summary, SERS‐active metal pellets can be produced simply and cost effectively by the method reported here, and this method is expected to be utilized in the development of SERS‐based analytical devices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the adsorption of 4‐mercaptobenzoic acid (4‐MBA) on TiO2 nanoparticles was studied mostly by surface‐enhanced Raman spectroscopy (SERS) and UV‐vis spectroscopy, at different pH values as well as under different temperatures and concentrations. The results show that the 4‐MBA molecules are bonded to the TiO2 surface both through the sulfur atoms and COO groups at neutral or alkaline pH, but only through the sulfur atom at acidic pH. Furthermore, the 4‐MBA molecules possess high adsorptive stability on TiO2 at a comparatively high temperature (150 °C). Concentration‐dependent SERS experiments show that the saturation concentration for 4‐MBA adsorbed on TiO2 is about 10−3 M in natural case (pH = 6). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A comparative study of the solid substrates used in surface‐enhanced Raman scattering (SERS) based immunoassay is made in this paper. Five different substrates were prepared and divided into two groups with and without SERS activity. They are (1) a poly‐L ‐lysine slide, (2) a glutaraldehyde (GA)‐aminosilane slide, (3) a substrate assembled with silver nanoparticles, (4) a substrate assembled with silver nanoparticles and functionalized with GA–aminosilane and (5) a substrate assembled with gold nanoparticles, of which the first two are substrates are without SERS activity and the latter three are with SERS activity because of the existence of the metallic nanoparticles. The SERS experimental results show that the immunoassay performed on an SERS‐active substrate is more effective than that employing the inactive substrate. Among the inactive substrates, the GA–aminosilane slide with a better ability for antibody immobilization leads to a more sensitive immunoassay than the poly‐L ‐lysine slide. Moreover, for SERS‐based immunoassay, the substrate with assembled silver nanoparticles has an advantage of higher SERS enhancement capacity over the substrate assembled with gold nanoparticles. This work indicates that SERS‐active substrates play important and positive roles in sensitive SERS‐based immunoassay. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Some high‐affinity functional groups or resonant molecules were often used as probe molecules adsorbed on silver nanoparticles for Surface‐enhanced Raman scattering (SERS). However, it is still unclear how the attached molecules interact with the silver nanoparticles' surface, and how the anchoring groups affect the optical and electronic properties of molecules. Here, we report that surface‐enhanced Raman studies of two organic compounds; rhodamine 6G (R6G) and its aminated derivative (R‐NH2) have very different functional groups for surface binding but nearly identical SERS spectroscopic properties at pH = 7 and UV–vis at pH = 3, respectively. A surprise was found that under the same experimental conditions, the SERS signal intensity for R6G is nearly 50‐fold higher than that of R‐NH2. Furthermore, the pH‐dependent study reveals that the structure of R6G is irreversibly stabilized or ‘locked’ in its form and no longer responsive to pH changes. In contrast, R‐NH2 is still sensitive to pH, and can be switched between its open‐ring and closed‐ring structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Silver thiolate is a layered compound with a Raman spectrum that is known to change with time, becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of the parent thiol molecule adsorbed on Ag nanoparticles. On this basis, the Raman scattering characteristics of silver 4‐aminobenzenethiolate (Ag‐4ABT) compounds were investigated to determine whether certain peaks that are identifiable in the SERS spectrum of 4‐aminobenzenethiol (4‐ABT) but absent in its normal Raman spectrum were also apparent in the Ag salt spectrum. For comparative purposes, the Raman scattering characteristics of silver 4‐dimethylaminobenzenethiolate (Ag‐4MABT) were also examined. Raman spectra acquired while spinning the sample were typified by only a1‐type vibrational bands of Ag‐4ABT and Ag‐4MABT, whereas in the static condition, several non‐a1‐type bands were identified. The spectral patterns acquired in the static condition were similar to the intrinsic SERS spectra of 4‐ABT or 4‐dimethylaminobenzenethiol (4‐MABT) adsorbed on pure Ag nanoparticles. Notably, the CH3 group vibrational bands were observable for Ag‐4MABT irrespective of the sample rotation. In addition, no decrease in intensity during irradiation with a visible laser was observed for any of the bands, suggesting that no chemical conversion actually took place in either 4‐ABT or 4‐MABT. The preponderance of evidence led to the conclusion that the non‐a1‐type bands observable in the SERS spectra must be associated with the chemical enhancement mechanism acting on the Ag nanoparticles. The chemical enhancement effect was more profound at 514.5 nm than at 632.8 nm, and was more favorable for 4‐ABT than 4‐MABT at both wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
以密堆积的700 nm单分散聚苯乙烯微球为模板,采用多电流阶跃方法制备了不同深度的二维有序微/纳尺度银球腔阵列。通过扫描电子显微镜,反射紫外对球腔形貌及表面等离子体共振进行了表征,以对氨基苯硫酚及罗丹明6G为探针分子进行了表面增强拉曼光谱(SERS)的研究。结果表明,通过控制电化学沉积的条件可以实现对球腔形貌的控制。以该种球腔阵列作为SERS基底,其增强因子可达107,并具有良好的信号重现性,信号间相对标准偏差小于8%。该基底用于对罗丹明6G的定量检测,检测限可达0.1 ng·mL-1。  相似文献   

12.
Gelatin‐protected silver nanoparticles have been synthesized by a one‐pot, green method for surface‐enhanced Raman scattering (SERS) applications using gelatin as the reducing and stabilizing agent. The gelatin protection on silver nanoparticle surface helps improve its stability greatly and water dispersibility, while retaining high SERS activity of silver nanoparticles. The gelatin‐protected silver nanoparticles showed SERS signals as low as 100 nM of the typical Raman reporter molecules, RuBPY and R6G and 10 μM of other molecules of interest, melamine and folic acid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we demonstrate a cascaded, multiplicative electromagnetic enhancement effect in surface‐enhanced Raman scattering (SERS) on periodically micropatterned films made of colloidal gold nanoparticles, prepared by a self‐assembly approach, without implying lithography procedures. The multiplicative enhancement effect is obtained by combining surface plasmon near‐field enhancement due to nanoscale features with far‐field photonic coupling by periodic microscale features. The effect is observed for both internal Raman reporters (molecules attached to the Au colloids before their assembly) and external Raman probes (molecules adsorbed on the samples after film assembly). The ability of the patterned films for far‐field light coupling is supported by reflectivity spectra, which present minima/maxima in the visible spectral range. Finite‐difference time‐domain computer simulations of the electric field distribution also support this interpretation. The fabricated dual‐scale SERS substrates exhibit a good spot‐to‐spot reproducibility and time stability, as proved by the SERS response over a time scale longer than 1 month. The experimental demonstration of this cascaded electromagnetic enhancement effect contributes to a better understanding of SERS and can affect future design of SERS substrates. Moreover, such dual‐scale colloidal films prepared by convective self‐assembly can be of general interest for the broader field of nanoparticle‐based devices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Plasmonic gold nanostars offer a new platform for surface‐enhanced Raman scattering (SERS). However, due to the presence of organic surfactant on the nanoparticles, SERS characterization and application of nanostar ensembles in solution have been challenging. Here, we applied our newly developed surfactant‐free nanostars for SERS characterization and application. The SERS enhancement factors (EF) of silver spheres, gold spheres and nanostars of similar sizes and concentration were compared. Under 785 nm excitation, nanostars and silver spheres have similar EF, and both are much stronger than gold spheres. Having plasmon matching the incident energy and multiple ‘hot spots’ on the branches bring forth strong SERS response without the need to aggregate. Intracellular detection of silica‐coated SERS‐encoded nanostars was also demonstrated in breast cancer cells. The non‐aggregated field enhancement makes the gold nanostar ensemble a promising agent for SERS bioapplications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, pure and Zn‐doped TiO2 nanoparticles (NPs) with various content of Zn were prepared by a sol–hydrothermal method and were employed as active substrates for surface‐enhanced Raman scattering (SERS). On the 3% Zn‐doped TiO2 substrate, 4‐mercaptobenzoic acid(4‐MBA) molecules exhibit a higher SERS intensity by a factor of 6, as compared with the native enhancement of 4‐MBA adsorbed on undoped TiO2 NPs. Moreover, the higher SERS activity was still observed on the 3% Zn‐doped TiO2 NPs at temperature even up to 125 °C. These results indicate that an appropriate amount of Zn doping can improve the SERS performances of TiO2 SERS‐active substrates. The introduction of Zn dopant can enrich the surface states (defects) of TiO2 and improve the separation efficiency of photo‐generated charge carriers (electrons and holes) in TiO2, according to measurements of X‐ray diffraction, UV‐visible diffuse reflectance spectroscopy, and photoluminescence, which are responsible for the influence of Zn dopant on the improved SERS performances of TiO2 NPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The pH‐dependent surface‐enhanced Raman scattering (SERS) of 1,2,4‐triazole adsorbed on silver electrode and normal Raman (NR) spectra of this compound in the aqueous solutions were investigated. The observed bands in the NR and SERS spectra were assigned with the help of density functional theory calculations for model molecules in the neutral, anionic, and cationic forms and their complexes with silver. The Raman wavenumbers and intensities were computed at the optimized molecular geometry. Vibrational assignments of the SERS and NR spectra are provided by calculated potential energy distributions. The combination of experimental SERS results and density functional theory calculations provide an insight into the molecular structure of adlayers formed by 1,2,4‐triazole on a silver surface at varying pH values and enable the determination of molecular orientation with respect to the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs‐R6G) were assembled on glass and used as the seeds to in situ grow silver‐coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs‐R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV‐visible spectroscopy. More importantly, the obtained silver‐coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs‐R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs‐R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min. In addition, the reproducibility of SERS signal on the fabricated nanostructures is very high with the intensity error lower than 15%, which has great promise as a probe for application in bioanalysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The substrate‐dependent surface‐enhanced Raman scattering (SERS) of 4‐aminobenzenethiol (4‐ABT) adsorbed on Au surfaces has been investigated. 4‐ABT is one of the very unique adsorbate molecules whose SERS spectral patterns are known to be noticeably dependent on the relative contribution of chemical enhancement mechanism vs electromagnetic enhancement mechanism. The SERS spectral patterns of 4‐ABT adsorbed on gold substrates with various surface morphology have thus been analyzed in terms of the symmetry types of the vibrational modes. Almost invisibly weak b2 type vibrational bands were observed in the SERS spectra of the 4‐ABT adsorbed on Au colloidal sol nanoparticles or commercially available Au micro‐powders because of the weak contribution of the chemical enhancement. However, greatly enhanced b2 vibrational bands were observed in the spectra of the 4‐ABT molecules adsorbed on the synthesized Au(Zn) sponge or the electrochemically roughened Au(ORC) foil caused by the strong contribution of the chemical enhancement mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface‐enhanced Raman scattering (SERS) spectroscopy. Star‐shaped gold (Au) NPs were prepared in aqueous solutions by the seed‐mediated growth method and tested for Raman enhancement using 2‐mercaptopyridine (2‐MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman enhancement factors (EFs) for 2‐MPy on Au nanostars and nanorods are comparable and estimated as greater than 5 orders of magnitude. However, the enhancement for CV on nanostars was significantly higher than for nanorods, in particular at CV concentrations of 100 nM or lower. This article is a US Government work and is in the public domain in the USA. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号