首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ta2O5 films axe deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2 O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer (XRD) results. X-ray photoelectron spectroscopy (XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2 O5 film achieves the highest laser induced damage threshold (LIDT) either at 355 or 1064nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.  相似文献   

2.
Ablation thresholds and damage behavior of cleaved and polished surfaces of CaF2, BaF2, LiF and MgF2 subjected to single-shot irradiation with 248 nm/14 ns laser pulses have been investigated using the photoacoustic mirage technique and scanning electron microscopy. For CaF2, standard polishing yields an ablation threshold of typically 20 J/cm2. When the surface is polished chemo-mechanically, the threshold can be raised to 43 J/cm2, while polishing by diamond turning leads to intermediate values around 30 J/cm2. Cleaved surfaces possess no well-defined damage threshold. When comparing different fluoride surfaces prepared by diamond turning it is found that the damage resistivity roughly scales with the band gap. We find an ablation threshold of 40 J/cm2 for diamond turned LiF while the MgF2 surface can withstand a fluence of more than 60 J/cm2 without damage. The damage topography of conventionally polished surfaces shows flaky ablation across the laser-heated area with cracks along the cleavage planes. No ablation is observed in the case of chemo- mechanical polishing; only a few cracks appear. Diamond turned surfaces show small optical absorption but mostly cracks and ablation of flakes and, in some cases, severe damage in the form of craters larger than the irradiated area. The origin of such different damage behavior is discussed.  相似文献   

3.
We present results on the surface damage threshold of a-SiO2 and YLF after single and multiple laser pulse irradiation at a pulse duration of 100 fs and radiation wavelength of 800 nm. The surface damage threshold drops dramatically after the first laser shots until reaching an almost constant level. The threshold reduction at low shot numbers is attributed to laser induced defect formation. This has important consequences for applications, such as laser machining and the lifetime of optical components. As an example of relevance to applications, we discuss the generation of high quality micro pockets in a-SiO2 and YLF.  相似文献   

4.
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355 nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd:YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LIDT of Al2O3 thin film.  相似文献   

5.
We investigate the laser damage behaviour of an electron-beam-deposited TiO2 monolayer at different process parameters. The optical properties, chemical composition, surface defects, absorption and laser-induced damage threshold (LIDT) of films are measured. It is found that TiO2 films with the minimum absorption and the highest LIDT can be fabricated using a TiO2 starting material after annealing. LIDT is mainly related to absorption and is influenced by the non-stoichiometric defects for TiO2 films. Surface defects show no evident effects on LIDT in this experiment.  相似文献   

6.
We examine laser-induced ion and neutral emissions from single-crystal CaHPO4·2 H2O (brushite), a wide-band-gap, hydrated inorganic single crystal, with 248-nm excimer laser radiation. Both laser-induced ion and neutral emissions are several orders of magnitude higher following exposure to 2 keV electrons at current densities of 200 7A/cm2 and doses of 1 C/cm2. In addition to intense Ca+ signals, electron-irradiated surfaces yield substantial CaO+, PO+, and P+ signals. As-grown and as-cleaved brushite show only weak neutral O2 and Ca emissions, whereas electron-irradiated surfaces yield enhanced O2, Ca, PO, PO2, and P emissions. Electron irradiation (i) significantly heats the sample, leading to thermal dehydration (CaHPO4 formation) and pyrolysis (Ca2P2O7 formation) and (ii) chemically reduces the surface via electron stimulated desorption. The thermal effects are accompanied by morphological changes, including recrystallization. Although complex, these changes lead to high defect densities, which are responsible for the dramatic enhancements in the observed laser desorption.  相似文献   

7.
This paper presents a novel laser technique for the formation of metal Ag and perovskite-oxide LaxSr1-xCoO3 coatings. Metallic Ag and LaxSr1-xCoO3 are conductive materials with applications as resistors and as electrodes in the microelectronics area. Suitable precursors in the form of sol gels are placed on substrates and are subsequently sintered by high-power laser irradiation. The Ag precursor is an aqueous sol of nanosized particles, while for the La0.8Sr0.2CoO3, a sol gel type precursor is used. Substrates (e.g., fused silica) are coated with the precursor solutions by spinning and are dried to stable solid layers. The coatings are cured and sintered to a defined pattern by means of a 3-kW CO2 laser beam scanned over the whole substrate surface. The microstructure of the coatings was examined by the use of scanning electron microscopy and X-ray diffraction, and the electrical properties were measured by the four-point resistivity method. The La0.8Sr0.2CoO3 coatings had a perovskite cubic structure with a lattice constant of 0.383 nm. The resistivity of the coatings was 30 mQ cm, and the temperature dependence of the resistivity was 1.8 mQ cm/°C. Metallic Ag coatings with a thickness of 100-170 nm were obtained with a resistivity of 20 7Q cm. This new technology is promising for the growth of three-dimensional (3-D) structures and multilayers, especially because it can be introduced in industrial scale production.  相似文献   

8.
Al2O3 seal ring faces were treated by KrF excimer laser irradiation. Surface characteristics induced by laser irradiation depend upon laser fluence, the number of laser pulses, the frequency and duration of the laser pulses, the rotation rate of the ring, and the processing atmosphere. Microstructural analyses of the surface and cross section of the laser-processed seal faces showed that, at low fluence (1.8 J/cm2), the surface is covered by scale due to the melting/resolidification processes. At high fluence (7.5 J/cm2), there is no continuous scaling on the surfaces. Material is removed by decomposition/vaporisation and the ablation depth is linearly dependent on the number of pulses; on the surface, a network of microcracks forms. The evolution of surface morphology and roughness is discussed with reference to composition, the microstructure and physical and optical properties of Al2O3, and laser processing parameters.  相似文献   

9.
Ta2O5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta2O5 films on different substrates are investigated before and after annealing at 673 K for 12 h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta2O5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta2O5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed.  相似文献   

10.
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μ. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μ for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.  相似文献   

11.
The most prominent phenomena on the target surface induced by laser irradiation in pulsed laser deposition is the formation of conical morphologies in the irradiated area. The conical morphologies formed under different laser fluences and the ambient oxygen pressures in KrF laser ablation of Pb(Zr0.53Ti0.47)O3 were studied in detail by using scanning electron microscopy. The results indicate that, depending on the melting extent of the irradiated surface, there are two kinds of cones: one type with well-defined cone tip and cone body and the other having only a cone tip. Pb is very deficient in cone tip. The gas ambient pressure plays a remarkable role in the laser-target interaction. These results are interpreted by employing the impurity shielding mechanism and the surface instability mechanism.  相似文献   

12.
In the irradiation of thick films of aromatics (C6H5Cl and C6H5CH3 enriched with dopants of varying volatilities), the attainment of the threshold is shown to result in qualitatively different ejection characteristics. In particular, the comparison of the desorption efficiencies either of species premixed in the film or of photoproducts formed by the irradiation shows that below the threshold only highly volatile species desorb. In contrast, above the threshold, even highly involatile species are found to be ejected efficiently. The efficient ejection of these species cannot be accounted for by a change in the absorbed energy. Instead, the operation of a non-thermal ejection mechanism is strongly indicated. The results are consistent with the delineation drawn by molecular dynamics simulations [12] for surface vaporization at fluences below the ablation threshold and ejection as a result of pressure buildup above it.  相似文献   

13.
Laser-induced etching of polycrystalline Al2O3TiC material by a tightly-focused cw Ar ion laser has been investigated in a KOH solution with different concentrations. It is found that the KOH concentration can strongly affect the etching quality where low KOH concentration can result in rough and irregular patterns. Laser-induced etching of polycrystalline Al2O3TiC in a KOH solution is found to be a photothermal reaction in which a threshold laser power exists. With an appropriate set of etching parameters, well-defined grooves can be obtained with clean side walls and with an etching rate up to several hundred micrometers per second. The etching behavior is also found to depend on laser scanning direction. It is also found that the grains in the polycrystalline Al2O3TiC material play an important role in the etching dynamics and etching quality. This etching process is believed to be applicable to the formation of a slider surface of magnetic heads in the future.  相似文献   

14.
TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.  相似文献   

15.
在复合波长(波长分别为1053、527、351nm)情况下,利用激光近场对熔石英样品进行损伤实验。设计了一种基于激光近场辐照的损伤阈值定义方法,并利用带有灰度抑制的分水岭标记算法对损伤图像进行损伤区域提取,通过对比损伤图像与相应光束近场能量分布,计算出损伤区域与非损伤区域临界处的光能量密度,即为熔石英样品的损伤阈值。实验结果表明,复合波长激光诱导熔石英损伤是3种波长激光共同作用的结果,但351nm激光对损伤起主要作用,初始损伤阈值为8.22J/cm2;在复合波长激光多次辐照样品的情况下,熔石英样品后表面的损伤成指数形式增长,损伤增长系数为0.59。  相似文献   

16.
A new technique of dual-beam laser ablation of fused silica by multiwavelength excitation process using a 248-nm KrF excimer laser (ablation beam) coupled with a 157-nm F2 laser (excitation beam) in dry nitrogen atmosphere is reported. The dual-beam laser ablation greatly reduced debris deposition and, thus, significantly improved the ablation quality compared with single-beam ablation of the KrF laser. High-quality ablation can be achieved at the delay times of KrF excimer laser irradiation shorter than 10 ns due to a large excited-state absorption. The ablation rate can reach up to 80 nm/pulse at the fluence of 4.0 J/cm2 for the 248-nm laser and 60 mJ/cm2 for the F2 laser. The ablation threshold and effective absorption coefficient of KrF excimer laser are estimated to be 1.4 J/cm2 and 1.2᎒5 cm-1, respectively.  相似文献   

17.
Photostimulated direct etching of GaN has been demonstrated with extremely high etching rate up to 135 nm/pulse. The process consists of laser irradiation and ex-situhydrochloric acid treatment. Not only deep etching but also a highly planarized surface are obtained by an increase in laser fluence and the number of pulses. Seven-pulse irradiation at 1 J/cm2 decreases surface average roughness (Ra) to ~2 nm from ~10 nm of the untreated sample. No deep-level emission (450-600 nm) is detected in photoluminescence measurement on the samples irradiated with laser fluences as high as 3 J/cm2.  相似文献   

18.
The energy of the acoustic pulse generated by laser-surface interactions and measured by probe beam deflection was used to investigate laser surface damage thresholds of fluoride crystals with optical quality. It was found that damage thresholds decrease with increasing density of surface states. The defect density also controls the energy absorption mechanism: for surfaces with few defects, like polished MgF2 and CaF2, avalanche breakdown occurs at above 1 GW/cm2, whereas for materials with lower damage thresholds, such as LiF, BaF2, and roughened or incubated surfaces of CaF2, multiphoton absorption across the band gap is observed.  相似文献   

19.
H. Chen  X. Chen  Y. Zhang  Y. Xia 《Laser Physics》2007,17(12):1378-1381
We present results on the surface-damage threshold of lithium niobate after single-and multiple-femtosecond laser pulse irradiation at the pulse duration of 80 fs, with a 800-nm wavelength, and a repetition rate of 1 kHz. The surface-ablation threshold was found to decrease significantly with an increase in the pulse number applied to the surface until reaching an almost constant level due to an incubation effect, which is attributed to the laser-induced defect formation. The threshold of lithium niobate under a single shot is found to be 2.82 J/cm2, and the threshold fluence for an infinite number of pulses F th(∞) converges to a common value of 0.52 ± 0.06 J/cm2 for N > 80. The results have the potential for application in laser micromachining and the fabrication of related optical devices and applications in frequency conversion by a femtosecond laser in lithium niobate.  相似文献   

20.
The ferroelectric crystal Ba2TiSi2O8 with high second-order optical nonlinearity is precipitated in Sm^3+-doped BaO-TiO2-SiO2 glass by a focused 800hm, 250 kHz and 150fs femtosecond laser irradiation. No apparent blue and red emissions are observed at the beginning, while strong blue emission due to second harmonic generation and red emission due to the f-f transitions of Sm^3+ are observed near the focal point of the laser beam after irradiation for 25s. Micro-Raman spectra confirm that Ba2 TiSi2O8 crystalline dots and lines are formed after laser irradiation. The mechanism of the phenomenon is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号