首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
俞洋  张文杰  赵婉莹  林贤  金钻明  刘伟民  马国宏 《物理学报》2019,68(1):17201-017201
单层过渡金属硫化物由于其特有的激子效应以及强自旋-谷耦合性质,在光电子学及谷电子学等方面有着很广阔的应用前景.利用超快时间分辨光谱,本文系统地比较了两类钨基单层硫化物(WS_2和WSe_2)的A-激子动力学和谷自旋弛豫特性.实验结果表明, WS_2单层膜的A-激子弛豫表现为双指数过程,而对于WSe_2,其A-激子衰减表现为三指数过程,且激子的寿命远长于前者. WS_2谷自旋极化弛豫表现为单指数衰减,其寿命约0.35 ps,主要由电子-空穴交换作用所主导.而对于WSe_2,谷自旋弛豫表现出双指数弛豫特性:一个寿命为0.5 ps的快过程和一个寿命为28 ps的慢过程.快过程的弛豫来源于电子-空穴交换作用,而慢过程则由于自旋晶格散射形成暗激子的过程.通过调谐抽运光波长,进一步证实WSe_2较WS_2更容易形成暗激子.  相似文献   

2.
Jiyu Dong 《中国物理 B》2021,30(11):117901-117901
Thin films of millimeter-scale continuous monolayer WS2 have been grown on SiO2/Si substrate, followed by the deposition of β-In2Se3 crystals on monolayer WS2 to prepare In2Se3/WS2 van de Waals heterostructures by a two-step chemical vapor deposition (CVD) method. After the growth of In2Se3 at elevated temperatures, high densities of In2Se3/WS2 heterostructure bubbles with monolayer to multilayer β-In2Se3 crystals atop are observed. Fluorescence of the resultant β-In2Se3/WS2 heterostructure is greatly enhanced in intensity upon the formation of bubbles, which are evidenced by the Newton's rings in optical image owing to constructive and destructive interference. In photoluminescence (PL) mapping images of monolayer β-In2Se3/monolayer WS2 heterobilayer bubble, significant oscillatory behavior of emission intensity is demonstrated due to constructive and destructive interference. However, oscillatory behaviors of peak position are also observed and come from a local heating effect induced by an excitation laser beam. The oscillatory mechanism of PL is further verified by changing the exterior pressure of bubbles placed in a home-made vacuum chamber. In addition, redshifted in peak position and broadening in peak width are observed due to strain effect during decreasing the exterior pressure of bubbles.  相似文献   

3.
Lijun Wu 《中国物理 B》2021,30(8):87802-087802
Due to the large exciton binding energy, two-dimensional (2D) transition metal dichalcogenides (TMDCs) provide an ideal platform for studying excitonic states and related photonics and optoelectronics. Polarization states lead to distinct light-matter interactions which are of great importance for device applications. In this work, we study polarized photoluminescence spectra from intralayer exciton and indirect exciton in WS2 and WSe2 atomic layers, and interlayer exciton in WS2/WSe2 heterostructures by radially and azimuthally polarized cylindrical vector laser beams. We demonstrated the same in-plane and out-of-plane polarization behavior from the intralayer and indirect exciton. Moreover, with these two laser modes, we obtained interlayer exciton in WS2/WSe2 heterostructures with stronger out-of-plane polarization, due to the formation of vertical electric dipole moment.  相似文献   

4.
Jian-Min Wu 《中国物理 B》2022,31(5):57803-057803
Monolayer transition metal dichalcogenides favor the formation of a variety of excitonic quasiparticles, and can serve as an ideal material for exploring room-temperature many-body effects in two-dimensional systems. Here, using mechanically exfoliated monolayer WS2 and photoluminescence (PL) spectroscopy, exciton emission peaks are confirmed through temperature-dependent and electric-field-tuned PL spectroscopy. The dependence of exciton concentration on the excitation power density at room temperature is quantitatively analyzed. Exciton concentrations covering four orders of magnitude are divided into three stages. Within the low carrier concentration stage, the system is dominated by excitons, with a small fraction of trions and localized excitons. At the high carrier concentration stage, the localized exciton emission from defects coincides with the emission peak position of trions, resulting in broad spectral characteristics at room temperature.  相似文献   

5.
近年来,二硒化钼(MoSe_2)作为二维过渡金属硫属化合物(TMDs)中的一员,引起学术界和产业界的高度关注和广泛研究.薄层MoSe_2由于其比单层MoSe_2厚度大所以光密度较高,在光电器件领域中具有潜在的应用.采用一种处于电容放电模式(E-mode)的温和氧气电感耦合等离子体对薄层MoSe_2进行处理,实现其荧光增强到15倍.结合拉曼、荧光、原子力显微镜和X射线光电子能谱仪的表征,发现氧等离子中的氧原子通过物理和化学吸附修复了薄层MoSe_2的原始缺陷,从而使其荧光大大增强,同时氧气的化学吸附诱导在MoSe_2层中引入了p型掺杂,由负激子转变为中性激子,此研究为调控薄层MoSe_2的光学特性提供了新途径.  相似文献   

6.
吴元军  申超  谭青海  张俊  谭平恒  郑厚植 《物理学报》2018,67(14):147801-147801
以二硫化钼(MoS_2)为代表的过渡金属硫属化物属于二维层状材料,样品可以薄至单层.单层MoS_2是一种直接带隙半导体,在纳米逻辑器件、高速光电探测、纳米激光等领域具有广阔的应用前景.在实际应用中,温度是影响半导体材料能带结构和性质的主要因素之一.因此研究单层二维材料能带的温度依赖特性对理解其物理机理以及开展器件应用具有重要的意义.目前,在广泛采用的测量单层MoS_2反射谱的研究中,激子峰往往叠加在一个很强的光谱背底上,难以准确分辨激子的峰位和线宽.基于自行搭建的显微磁圆二向色谱系统,研究了单层MoS_2在65—300 K温度范围内的反射谱和磁圆二向色谱,结果表明磁圆二向色谱在研究单层材料激子能量和线宽方面具有明显的优势.通过分析变温的磁圆二向色谱,得到了不同温度下的A,B激子的跃迁能量和线宽.通过对激子能量和线宽的温度依赖关系进行拟合,进一步讨论了声子散射对激子线宽的影响.  相似文献   

7.
《中国物理 B》2021,30(9):97505-097505
The two-dimensional(2 D) transition-metal dichalcogenides(TMDCs) have been recently proposed as a promising class of materials for spintronic applications. Here, we report on the all-2 D van der Waals(vd W) heterostructure spin valve device comprising of an exfoliated ultra-thin WS_2 semiconductor acting as the spacer layer and two exfoliated ferromagnetic Fe_3 GeTe_2(FGT) metals acting as ferromagnetic electrodes. The metallic interface rather than Schottky barrier is formed despite the semiconducting nature of WS_2, which could be originated from the strong interface hybridization. The spin valve effect persists up to the Curie temperature of FGT. Moreover, our metallic spin valve devices exhibit robust spin valve effect where the magnetoresistance magnitude does not vary with the applied bias in the measured range up to 50 μA due to the Ohmic property, which is a highly desirable feature for practical application that requires stable device performance. Our work reveals that WS_2-based all-2 D magnetic vd W heterostructure, facilitated by combining 2 D magnets, is expected to be an attractive candidate for the TMDCs-based spintronic applications.  相似文献   

8.
Siwen You 《中国物理 B》2023,32(1):17901-017901
Hybrid organic-inorganic perovskite thin films have attracted much attention in optoelectronic and information fields because of their intriguing properties. Due to quantum confinement effects, ultrathin films in nm scale usually show special properties. Here, we report on the growth of methylammonium lead iodide (MAPbI3) ultrathin films via co-deposition of PbI2 and CH3NH3I (MAI) on chemical-vapor-deposition-grown monolayer MoS2 as well as the corresponding photoluminescence (PL) properties at different growing stages. Atomic force microscopy and scanning electron microscopy measurements reveal the MoS2 tuned growth of MAPbI3 in a Stranski-Krastanov mode. PL and Kelvin probe force microscopy results confirm that MAPbI3/MoS2 heterostructures have a type-II energy level alignment at the interface. Temperaturedependent PL measurements on layered MAPbI3 (at the initial stage) and on MAPbI3 crystals in averaged size of 500 nm (at the later stage) show rather different temperature dependence as well as the phase transitions from tetragonal to orthorhombic at 120 and 150 K, respectively. Our findings are useful in fabricating MAPbI3/transition-metal dichalcogenide based innovative devices for wider optoelectronic applications.  相似文献   

9.
Interface engineering in atomically thin transition metal dichalcogenides (TMDs) is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications and quantum devices. Interface engineering in a monolayer WSe2 sample via introduction of high-density edges of standing structured graphene nanosheets (GNs) is realized. A strong photoluminescence (PL) emission peak from intravalley and intervalley trions at about 750 nm is observed at the room temperature, which indicated the heavily p-type doping of the monolayer WSe2/thin graphene nanosheet-embedded carbon (TGNEC) film heterostructure. We also successfully triggered the emission of biexcitons (excited state biexciton) in a monolayer WSe2, via the electron trapping centers of edge quantum wells of a TGNEC film. The PL emission of a monolayer WSe2/GNEC film is quenched by capturing the photoexcited electrons to reduce the electron-hole recombination rate. This study can be an important benchmark for the extensive understanding of light–matter interaction in TMDs, and their dynamics.  相似文献   

10.
郭丽娟  胡吉松  马新国  项炬 《物理学报》2019,68(9):97101-097101
采用第一性原理方法研究了二硫化钨/石墨烯异质结的界面结合作用以及电子性质,结果表明在二硫化钨/石墨烯异质结中,其界面相互作用是微弱的范德瓦耳斯力.能带计算结果显示异质结中二硫化钨和石墨烯各自的电子性质得到了保留,同时,由于石墨烯的结合作用,二硫化钨呈现出n型半导体.通过改变界面的层间距可以调控二硫化钼/石墨烯异质结的肖特基势垒类型,层间距增大,肖特基将从p型转变为n型接触.三维电荷密度差分图表明,负电荷聚集在二硫化钨附近,正电荷聚集在石墨烯附近,从而在界面处形成内建电场.肖特基势垒变化与界面电荷流动密切相关,平面平均电荷密度差分图显示,随着层间距逐渐增大,界面电荷转移越来越弱,且空间电荷聚集区位置向石墨烯层方向靠近,导致费米能级向上平移,证实了肖特基势垒随着层间距的增加由p型接触向n型转变.本文的研究结果将为二维范德瓦耳斯场效应管的设计与制作提供指导.  相似文献   

11.
Xiao-Zhuo Qi 《中国物理 B》2022,31(10):104203-104203
Monolayer transition metal dichalcogenides (TMDs) are widely used for integrated optical and photoelectric devices. Owing to their broken inversion symmetry, monolayer TMDs have a large second-order optical nonlinearity. However, the optical second-order nonlinear conversion efficiency of monolayer TMDs is still limited by the interaction length. In this work, we theoretically study the second harmonic generation (SHG) from monolayer tungsten sulfide (WS2) enhanced by a silica microsphere cavity. By tuning the position, size, and crystal orientation of the material, second-order nonlinear coupling can occur between the fundamental pump mode and different second harmonic cavity modes, and we obtain an optimal SHG conversion efficiency with orders of magnitude enhancement. Our work demonstrates that the microsphere cavity can significantly enhance SHG from monolayer 2D materials under flexible conditions.  相似文献   

12.
We report the fabrication and photocarrier dynamics in graphene–MoSe_2 heterostructures. The samples were fabricated by mechanical exfoliation and manual stacking techniques. Ultrafast laser measurements were performed on the heterostructure and MoSe_2 monolayer samples. By comparing the results, we conclude that photocarriers injected in MoSe_2 of the heterostructure transfer to graphene on an ultrafast time scale. The carriers in graphene alter the optical absorption coefficient of MoSe_2. These results illustrate the potential applications of this material in optoelectronic devices.  相似文献   

13.
Periodic surface nanostructures induced by femtosecond laser pulses on polycrystalline ZnO are presented. By translating the sample line-by-line under appropriate irradiation conditions, grating-like nanostructures with an average period of 160 nm are fabricated. The dependence of surface morphologies on the processing parameters, such as laser fluence, pulse number and laser polarization, are studied by scanning electronic microscope (SEM). In addition, photoluminescence (PL) analysis at room-temperature indicates that the PL intensity of the irradiated area increases significantly compared with the un-irradiated area. Using femtosecond laser pulses irradiation to fabricate periodic surface nanostructures on polycrystalline ZnO is efficient, simple and low cost, which shows great potential applications in ZnO-based optoelectronic devices.  相似文献   

14.
Efficient biexciton (BX) photoluminescence (PL) from quantum dots (QDs) paves the way to the generation of entangled photons and related applications. However, the quantum yield (QY) of BX PL is much lower than that for single excitons (EX) due to efficient Auger-like recombination. In the vicinity of plasmon nanoparticles, the recombination rates of EX and BX may be affected by the Purcell effect, fluorescence quenching, and the excitation rate enhancement. Here, the effect of the plasmon resonance spectral position on the EX and BX PL is experimentally studied in two cases: when the plasmon band overlaps with the excitation wavelength and when it coincides with the QDs PL band. In the first case, the EX and BX excitation efficiencies are significantly increased but the EX QY reduced. As a result, the BX-to-EX QY ratio is higher than 1 at plasmon–exciton systems separations shorter than 40 nm. In the second case, the radiative recombination rates are enhanced by several orders of magnitude, which led to an increase in BX QY over distances of up to 90 nm. Finally, these two effects are obtained in the same hybrid structure, with the resultant increase in both excitation efficiency and QY of BX PL.  相似文献   

15.
《Current Applied Physics》2018,18(8):941-945
The origin of the variation of photoluminescence (PL) spectra of monolayer tungsten disulfide (WS2) is investigated systematically. Dependence of the PL spectrum on the excitation power show that the relatively sharp component corresponds to excitons whereas the broader component at slightly lower energy corresponds to negatively charged trions. PL imaging and second harmonic generation measurements show that the trion signals are suppressed more than the exciton signals near the edges, thereby relatively enhancing the excitonic feature in the PL spectrum and that such relative enhancement of the exciton signals is more pronounced near approximately armchair edges. This effect is interpreted in terms of depletion of free electrons near the edges caused by structural defects and adsorption of electron acceptors such as oxygen atoms.  相似文献   

16.
魏晓旭  程英  霍达  张宇涵  王军转  胡勇  施毅 《物理学报》2014,63(21):217802-217802
二硫化钼(MoS2)是一种层状的二维过渡金属硫族化合物材料,从块体到单层,禁带由间接带隙变为直接带隙,由于通常机械剥落的单层MoS2是n型掺杂的,使得其发光效率仍然很低. 在本文中,采用匀胶机旋涂的方法将共振吸收峰在514 nm附近的纳米金颗粒尽可能均匀的铺在单层、双层以及多层的MoS2样品表面,发现单层和双层样品的光致发光谱(PL谱)分别增强了约30倍和2倍同时伴随着峰位的蓝移,而多层样品的发光强度也略有增强. 拉曼特性揭示了纳米金颗粒对单层和双层MoS2样品产生了明显的p型掺杂,从而增强了发光;同时纳米金颗粒的表面等离子激元效应对激发光的天线作用也是增强MoS2的光致发光的一个因素. 关键词: 二硫化钼 光致发光 p型掺杂 Au纳米颗粒  相似文献   

17.
Yu-Chun Liu 《中国物理 B》2022,31(8):87803-087803
Different MoS2/Au heterostructures can play an important role in tuning the photoluminescence (PL) and optoelectrical properties of monolayer MoS2. Previous studies of PL of MoS2/Au heterostructures were mainly limited to the PL enhancement by using different Au nanostructures and PL quenching of monolayer MoS2 on flat Au surfaces. Here, we demonstrate the enhanced excitonic PL emissions of monolayer MoS2/Au heterostructures on Si/SiO2 substrates. By transferring the continuous monolayer MoS2 onto a stepped Au structure consisting of 60-nm and 100-nm Au films, the MoS2/Au-60 and MoS2/Au-100 heterostructures exhibit enhanced PL emissions, each with a blue-shifted PL peak in comparison with the MoS2/SiO2. Furthermore, the PL intensity of MoS2/Au-60 is about twice larger than that of MoS2/Au-100. The different enhanced excitonic PL emissions in MoS2/Au heterostructures can be attributed to the different charge transfer effects modified by the stepped Au structure. This work may provide an insight into the excitonic PL and charge transfer effect of MoS2 on Au film and yield novel phenomena in MoS2/Au heterostructures for further study of PL tuning and optoelectrical properties.  相似文献   

18.
Heng Yao 《中国物理 B》2022,31(4):46106-046106
To improve the stability and luminescence properties of CsPbBr3 QDs, we proposed a new core-shell structure for CsPbBr3/CdSe/Al quantum dots (QDs). By using a simple method of ion layer adsorption and a reaction method, CdSe and Al were respectively packaged on the surface of CsPbBr3 QDs to form the core-shell CsPbBr3/CdSe/Al QDs. After one week in a natural environment, the photoluminescence quantum yields of CsPbBr3/CdSe/Al QDs were greater than 80%, and the PL intensity remained at 71% of the original intensity. Furthermore, the CsPbBr3/CdSe/Al QDs were used as green emitters for white light-emitting diodes (LEDs), with the LEDs spectrum covering 129% of the national television system committee (NTSC) standard color gamut. The core-shell structure of QDs can effectively improve the stability of CsPbBr3 QDs, which has promising prospects in optoelectronic devices.  相似文献   

19.
Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures.  相似文献   

20.
光诱导功能退化是胶体量子点在应用中面临的主要挑战之一,本文针对这一问题研究了使用磁控溅射沉积SiO2薄膜形成钝化层来提高CdSe/ZnS量子点发光稳定性的方法。首先,通过三正辛基膦辅助连续离子层吸附反应方法合成了615 nm发光的红色CdSe/ZnS量子点。然后将量子点旋涂在SiO2/Si基片上,再通过磁控溅射方法在量子点上沉积了厚度为20 nm的SiO2薄膜作为钝化层。使用连续波激光光源分别在空气气氛和真空条件下照射样品,研究了经过不同照射时间后钝化和未钝化量子点的稳态光致发光光谱。结果表明,随着照射时间的延长,没有SiO2钝化的量子点的PL强度显著降低、PL峰值发生蓝移、FWHM不断增大。对比研究发现,由于SiO2薄膜能够阻挡空气中的水和氧,减缓了量子点表面的光诱导氧化现象,因此显著提高了CdSe/ZnS量子点的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号