首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《中国物理 B》2021,30(9):97507-097507
Exploring two-dimensional(2 D) magnetic heterostructures is essential for future spintronic and optoelectronic devices.Herein,using first-principle calculations,stable ferromagnetic ordering and colorful electronic properties are established by constructing the VS_2/C_3 N van der Waals(vdW) heterostructure.Unlike the semiconductive properties with indirect band gaps in both the VS_2 and C_3 N monolayers,our results indicate that a direct band gap with type-Ⅱ band alignment and p-doping characters are realized in the spin-up channel of the VS_2/C_3 N heterostructure,and a typical type-Ⅲband alignment with a broken-gap in the spin-down channel.Furthermore,the band alignments in the two spin channels can be effectively tuned by applying tensile strain.An interchangement between the type-Ⅱ and type-Ⅲ band alignments occurs in the two spin channels,as the tensile strain increases to 4%.The attractive magnetic properties and the unique band alignments could be useful for prospective applications in the next-generation tunneling devices and spintronic devices.  相似文献   

2.
《中国物理 B》2021,30(9):97501-097501
Among the layered two-dimensional ferromagnetic materials(2 D FMs),due to a relatively high T_C,the van der Waals(vdW) Fe_3 GeTe_2(FGT) crystal is of great importance for investigating its distinct magnetic properties.Here,we have carried out static and dynamic magnetization measurements of the FGT crystal with a Curie temperature TC ≈ 204 K.The M-H hysteresis loops with in-plane and out-of-plane orientations show that FGT has a strong perpendicular magnetic anisotropy with the easy axis along its c-axis.Moreover,we have calculated the uniaxial magnetic anisotropy constant(K_1)from the SQUID measurements.The dynamic magnetic properties of FGT have been probed by utilizing the high sensitivity electron-spin-resonance(ESR) spectrometer at cryogenic temperatures.Based on an approximation of single magnetic domain mode,the K_1 and the effective damping constant(α_(eff)) have also been determined from the out-of-plane angular dependence of ferromagnetic resonance(FMR) spectra obtained at the temperature range of 185 K to T_C.We have found large magnetic damping with the effective damping constant α_(eff) ~ 0.58 along with a broad linewidth(ΔH_(pp) 1000 Oe at 9.48 GHz,H ‖ c-axis).Our results provide useful dynamics information for the development of FGT-based spintronic devices.  相似文献   

3.
Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures.  相似文献   

4.
郭丽娟  胡吉松  马新国  项炬 《物理学报》2019,68(9):97101-097101
采用第一性原理方法研究了二硫化钨/石墨烯异质结的界面结合作用以及电子性质,结果表明在二硫化钨/石墨烯异质结中,其界面相互作用是微弱的范德瓦耳斯力.能带计算结果显示异质结中二硫化钨和石墨烯各自的电子性质得到了保留,同时,由于石墨烯的结合作用,二硫化钨呈现出n型半导体.通过改变界面的层间距可以调控二硫化钼/石墨烯异质结的肖特基势垒类型,层间距增大,肖特基将从p型转变为n型接触.三维电荷密度差分图表明,负电荷聚集在二硫化钨附近,正电荷聚集在石墨烯附近,从而在界面处形成内建电场.肖特基势垒变化与界面电荷流动密切相关,平面平均电荷密度差分图显示,随着层间距逐渐增大,界面电荷转移越来越弱,且空间电荷聚集区位置向石墨烯层方向靠近,导致费米能级向上平移,证实了肖特基势垒随着层间距的增加由p型接触向n型转变.本文的研究结果将为二维范德瓦耳斯场效应管的设计与制作提供指导.  相似文献   

5.
Yu-Ting Niu 《中国物理 B》2021,30(11):117506-117506
Two-dimensional ferromagnetic van der Waals (2D vdW) heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials, and for manipulating spin degree of freedom at the limit of few atomic layers, which empower next-generation spintronic and memory devices. However, to date, the electronic properties of 2D ferromagnetic heterostructures still remain elusive. Here, we report an unambiguous magnetoresistance behavior in CrI3/graphene heterostructures, with a maximum magnetoresistance ratio of 2.8%. The magnetoresistance increases with increasing magnetic field, which leads to decreasing carrier densities through Lorentz force, and decreases with the increase of the bias voltage. This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices.  相似文献   

6.
Hsiang-Chun Wang 《中国物理 B》2023,32(1):18504-018504
Photodetectors based on two-dimensional (2D) materials have attracted considerable attention because of their unique properties. To further improve the performance of self-driven photodetectors based on van der Waals heterojunctions, a conductive band minimum (CBM) matched self-driven SnS2/WS2 van der Waals heterojunction photodetector based on a SiO2/Si substrate has been designed. The device exhibits a positive current at zero voltage under 365 nm laser illumination. This is attributed to the built-in electric field at the interface of the SnS2 and WS2 layer, which will separate and transport the photogenerated carriers, even at zero bias voltage. In addition, the Al2O3 layer is covered by the surface of the SnS2/WS2 photodetector to further improve the performance, because the Al2O3 layer will introduce tensile stress on the surface of the 2D materials leading to a higher electron concentration and smaller effective mass of electrons in the films. This work provides an idea for the research of self-driven photodetectors based on a van der Waals heterogeneous junction.  相似文献   

7.
Jiyu Dong 《中国物理 B》2021,30(11):117901-117901
Thin films of millimeter-scale continuous monolayer WS2 have been grown on SiO2/Si substrate, followed by the deposition of β-In2Se3 crystals on monolayer WS2 to prepare In2Se3/WS2 van de Waals heterostructures by a two-step chemical vapor deposition (CVD) method. After the growth of In2Se3 at elevated temperatures, high densities of In2Se3/WS2 heterostructure bubbles with monolayer to multilayer β-In2Se3 crystals atop are observed. Fluorescence of the resultant β-In2Se3/WS2 heterostructure is greatly enhanced in intensity upon the formation of bubbles, which are evidenced by the Newton's rings in optical image owing to constructive and destructive interference. In photoluminescence (PL) mapping images of monolayer β-In2Se3/monolayer WS2 heterobilayer bubble, significant oscillatory behavior of emission intensity is demonstrated due to constructive and destructive interference. However, oscillatory behaviors of peak position are also observed and come from a local heating effect induced by an excitation laser beam. The oscillatory mechanism of PL is further verified by changing the exterior pressure of bubbles placed in a home-made vacuum chamber. In addition, redshifted in peak position and broadening in peak width are observed due to strain effect during decreasing the exterior pressure of bubbles.  相似文献   

8.
Lijun Wu 《中国物理 B》2021,30(8):87802-087802
Due to the large exciton binding energy, two-dimensional (2D) transition metal dichalcogenides (TMDCs) provide an ideal platform for studying excitonic states and related photonics and optoelectronics. Polarization states lead to distinct light-matter interactions which are of great importance for device applications. In this work, we study polarized photoluminescence spectra from intralayer exciton and indirect exciton in WS2 and WSe2 atomic layers, and interlayer exciton in WS2/WSe2 heterostructures by radially and azimuthally polarized cylindrical vector laser beams. We demonstrated the same in-plane and out-of-plane polarization behavior from the intralayer and indirect exciton. Moreover, with these two laser modes, we obtained interlayer exciton in WS2/WSe2 heterostructures with stronger out-of-plane polarization, due to the formation of vertical electric dipole moment.  相似文献   

9.
Yuan Gao 《中国物理 B》2022,31(10):107304-107304
Based on first-principles calculations, a two-dimensional (2D) van der Waals (vdW) bilayer heterostructure consisting of two topologically trivial ferromagnetic (FM) monolayers CrI3 and ScCl2 is proposed to realize the quantum anomalous Hall effect (QAHE) with a sizable topologically nontrivial band gap of 4.5 meV. Its topological nature is attributed to an interlayer band inversion between the monolayers and critically depends on the symmetry of the stacking configuration. We further demonstrate that the topologically nontrivial band gap can be increased nearly linearly by the application of a perpendicular external pressure and reaches 8.1 meV at 2.7 GPa, and the application of an external out-of-plane electric field can also modulate the band gap and convert the system back to topologically trivial via eliminating the band inversion. An effective model is developed to describe the topological phase evolution in this bilayer heterostructure. This work provides a new candidate system based on 2D vdW materials for realization of potential high-temperature QAHE with considerable controllability.  相似文献   

10.
Wenyang Zhao 《中国物理 B》2022,31(4):47101-047101
Lithium-sulfur batteries have attracted attention because of their high energy density. However, the "shuttle effect" caused by the dissolving of polysulfide in the electrolyte has greatly hindered the widespread commercial use of lithium-sulfur batteries. In this paper, a novel two-dimensional TiS2/graphene heterostructure is theoretically designed as the anchoring material for lithium-sulfur batteries to suppress the shuttle effect. This heterostructure formed by the stacking of graphene and TiS2 monolayer is the van der Waals type, which retains the intrinsic metallic electronic structure of graphene and TiS2 monolayer. Graphene improves the electronic conductivity of the sulfur cathode, and the transferred electrons from graphene enhance the polarity of the TiS2 monolayer. Simulations of the polysulfide adsorption show that the TiS2/graphene heterostructure can maintain good metallic properties and the appropriate adsorption energies of 0.98-3.72 eV, which can effectively anchor polysulfides. Charge transfer analysis suggests that further enhancement of polarity is beneficial to reduce the high proportion of van der Waals (vdW) force in the adsorption energy, thereby further enhancing the anchoring ability. Low Li2S decomposition barrier and Li-ion migration barrier imply that the heterostructure has the ability to catalyze fast electrochemical kinetic processes. Therefore, TiS2/graphene heterostructure could be an important candidate for ideal anchoring materials of lithium-sulfur batteries.  相似文献   

11.
Due to the unique electronic structure of half-metals, characterized by the conductivity of majority-spin and the band gap of minority-spin, these materials have emerged as suitable alternatives for the design of efficient giant magnetoresistive (GMR) devices. Based on the first-principles calculations, an excellent GMR device has been designed by using two-dimensional (2D) half-metal Mn2NO2. The results show that Mn2NO2 has sandwiched between the Au/nMn2NO2 (n = 1, 2, 3)/Au heterojunction and maintains its half-metallic properties. Due to the half-metallic characteristics of Mn2NO2, the total current of the monolayer device can reach up to 1500 nA in the ferromagnetic state. At low voltage, the maximum GMR is observed to be 1.15 × 1031 %. Further, by increasing the number of layers, the ultra-high GMR at low voltage is still maintained. The developed device is a spintronic device exhibiting the highest magnetoresistive ratio reported theoretically so far. Simultaneously, a significant negative differential resistance (NDR) effect is also observed in the heterojunction. Owing to its excellent half-metallic properties and 2D structure, Mn2NO2 is an ideal energy-saving GMR material.  相似文献   

12.
俞洋  张文杰  赵婉莹  林贤  金钻明  刘伟民  马国宏 《物理学报》2019,68(1):17201-017201
单层过渡金属硫化物由于其特有的激子效应以及强自旋-谷耦合性质,在光电子学及谷电子学等方面有着很广阔的应用前景.利用超快时间分辨光谱,本文系统地比较了两类钨基单层硫化物(WS_2和WSe_2)的A-激子动力学和谷自旋弛豫特性.实验结果表明, WS_2单层膜的A-激子弛豫表现为双指数过程,而对于WSe_2,其A-激子衰减表现为三指数过程,且激子的寿命远长于前者. WS_2谷自旋极化弛豫表现为单指数衰减,其寿命约0.35 ps,主要由电子-空穴交换作用所主导.而对于WSe_2,谷自旋弛豫表现出双指数弛豫特性:一个寿命为0.5 ps的快过程和一个寿命为28 ps的慢过程.快过程的弛豫来源于电子-空穴交换作用,而慢过程则由于自旋晶格散射形成暗激子的过程.通过调谐抽运光波长,进一步证实WSe_2较WS_2更容易形成暗激子.  相似文献   

13.
刘恩华  陈钊  温晓莉  陈长乐 《物理学报》2016,65(11):117701-117701
界面效应在提升异质结构材料的多铁性能方面有着重要的作用. 本文采用脉冲激光沉积技术在SrTiO3(STO)基片上制备了Bi0.8Ba0.2FeO3(BBFO)/La2/3Sr1/3MnO3(LSMO)异质结. X-射线衍射图谱表明异质结呈现单相外延生长, 利用高分辨透射电镜进一步证实了BBFO为四方相结构. X-射线光电子能谱证实异质结中只存在Fe3+ 离子, 没有产生价态的变化, 揭示了异质结铁电和铁磁性的增强与BBFO/LSMO的界面有关. 同时, 测试了磁电阻(MR)和磁介电(MD), 当磁场强度为0.8 T, 温度为70 K时, MR约为-42.2%, MD约为21.2%. 并且发现在180 K时出现磁相的转变. 实验结果揭示出异质界面效应在提升材料的多铁性和磁电耦合效应方面具有超常的优点, 是加快多铁材料实际应用的有效途径.  相似文献   

14.
张小欧  李庆芳 《中国物理 B》2016,25(11):117103-117103
We investigate the effects of strain on the electronic and magnetic properties of ReS_2 monolayer with sulfur vacancies using density functional theory.Unstrained ReS_2 monolayer with monosulfur vacancy(V_s) and disulfur vacancy(V_(2S))both are nonmagnetic.However,as strain increases to 8%,V_S-doped ReS_2 monolayer appears a magnetic half-metal behavior with zero total magnetic moment.In particular,for V_(2S)-doped ReS_2 monolayer,the system becomes a magnetic semiconductor under 6%strain,in which Re atoms at vicinity of vacancy couple anti-ferromagnetically with each other,and continues to show a ferromagnetic metal characteristic with total magnetic moment of 1.60μb under 7%strain.Our results imply that the strain-manipulated ReS_2 monolayer with V_S and V_(2S) can be a possible candidate for new spintronic applications.  相似文献   

15.
《中国物理 B》2021,30(9):97504-097504
Since the discovery of magnetism in two dimensions,effective manipulation of magnetism in van der Waals magnets has always been a crucial goal.Ionic gating is a promising method for such manipulation,yet devices gated with conventional ionic liquid may have some restrictions in applications due to the liquid nature of the gate dielectric.Lithium-ion conducting glass-ceramics(LICGC),a solid Li~+ electrolyte,could be used as a substrate while simultaneously acts as a promising substitute for ionic liquid.Here we demonstrate that the ferromagnetism of Fe_3 GeTe_2(FGT) could be modulated via LICGC.By applying a voltage between FGT and the back side of LICGC substrate,Li~+ doping occurs and causes the decrease of the coercive field(H_c) and ferromagnetic transition temperature(T_c) in FGT nanoflakes.A modulation efficiency for of up to ~ 24.6% under V_g=3.5 V at T=100 K is achieved.Our results provide another method to construct electrically-controlled magnetoelectronics,with potential applications in future information technology.  相似文献   

16.
The interfacial properties of MoS2/4H-SiC heterostructures were studied by combining first-principles calculations and X-ray photoelectron spectroscopy. Experimental (theoretical) valence band offsets (VBOs) increase from 1.49 (1.46) to 2.19 (2.36) eV with increasing MoS2 monolayer (1L) up to 4 layers (4L). A strong interlayer interaction was revealed at 1L MoS2/SiC interface. Fermi level pinning and totally surface passivation were realized for 4H-SiC (0001) surface. About 0.96e per unit cell transferring forms an electric field from SiC to MoS2. Then, 1L MoS2/SiC interface exhibits type I band alignment with the asymmetric conduction band offset (CBO) and VBO. For 2L and 4L MoS2/SiC, Fermi level was just pinning at the lower MoS2 1L. The interaction keeps weak vdW interaction between upper and lower MoS2 layers. They exhibit the type II band alignments and the enlarged CBOs and VBOs, which is attributed to weak vdW interaction and strong interlayer orbital coupling in the multilayer MoS2. High efficiency of charge separation will emerge due to the asymmetric band alignment and built-in electric field for all the MoS2/SiC interfaces. The multiple interfacial interactions provide a new modulated perspective for the next-generation electronics and optoelectronics based on the 2D/3D semiconductors heterojunctions.  相似文献   

17.
垂直磁各向异性稀土-铁-石榴石纳米薄膜在自旋电子学中具有重要应用前景.本文使用溅射方法在(111)取向掺杂钇钪的钆镓石榴石(Gd0.63Y2.37Sc2Ga3O12,GYSGG)单晶衬底上外延生长了2—100 nm厚的钬铁石榴石(Ho3Fe5O12,HoIG)薄膜,并进一步在HoIG上沉积了3 nm Pt薄膜.测量了室温下HoIG的磁各向异性和HoIG/Pt异质结构的自旋相关输运性质.结果显示,厚度薄至2 nm的HoIG薄膜(小于2个单胞层)在室温仍具有铁磁性,且由于外延应变,2—60 nm厚HoIG薄膜都具有很强的垂直磁各向异性,有效垂直各向异性场最大达350 mT;异质结构样品表现出非常可观的反常霍尔效应和“自旋霍尔/各向异性”磁电阻效应,前者在HoIG厚度小于4 nm时开始缓慢下降,而后者当HoIG厚度小于7 nm时急剧减小,说明相较于反常霍尔效应,磁电阻效应对HoIG的体磁性相对更加敏感;此外,自旋相关热电压随HoIG厚度减薄在整个厚度范围以指数方式下降,说明遵从热激化磁振子运动规律的自旋塞贝克效应是其主要贡献者.本文结果表明HoIG纳米薄膜具有可调控的垂直磁各向异性,厚度大于4 nm的HoIG/Pt异质结构具有高效的自旋界面交换作用,是自旋电子学应用发展的一个重要候选材料.  相似文献   

18.
Xiuya Su 《中国物理 B》2022,31(3):37301-037301
Recently, two-dimensional van der Waals (vdW) magnetic heterostructures have attracted intensive attention since they can show remarkable properties due to the magnetic proximity effect. In this work, the spin-polarized electronic structures of antimonene/Fe3GeTe2 vdW heterostructures were investigated through the first-principles calculations. Owing to the magnetic proximity effect, the spin splitting appears at the conduction-band minimum (CBM) and the valence-band maximum (VBM) of the antimonene. A low-energy effective Hamiltonian was proposed to depict the spin splitting. It was found that the spin splitting can be modulated by means of applying an external electric field, changing interlayer distance or changing stacking configuration. The spin splitting energy at the CBM monotonously increases as the external electric field changes from -5 V/nm to 5 V/nm, while the spin splitting energy at the VBM almost remains the same. Meanwhile, as the interlayer distance increases, the spin splitting energies at the CBM and VBM both decrease. The different stacking configurations can also induce different spin splitting energies at the CBM and VBM. Our work demonstrates that the spin splitting of antimonene in this heterostructure is not singly dependent on the nearest Sb—Fe distance, which indicates that magnetic proximity effect in heterostructures may be modulated by multiple factors, such as hybridization of electronic states and the local electronic environment. The results enrich the fundamental understanding of the magnetic proximity effect in two-dimensional vdW heterostructures.  相似文献   

19.
危阳  马新国  祝林  贺华  黄楚云 《物理学报》2017,66(8):87101-087101
采用基于色散修正的平面波超软赝势方法研究了二硫化钼/石墨烯异质结的界面结合作用及其对电荷分布和带边电位的影响.研究表明二硫化钼与石墨烯之间可以形成范德瓦耳斯力结合的稳定堆叠结构.通过能带结构计算,发现二硫化钼与石墨烯的耦合导致二硫化钼成为n型半导体,石墨烯转变成小带隙的p型体系.并通过电子密度差分图证实了界面内二硫化钼附近聚集负电荷,石墨烯附近聚集正电荷,界面内形成的内建电场可以抑制光生电子-空穴对的复合.石墨烯的引入可以调制二硫化钼的能带,使其导带底上移至-0.31 eV,提高了光生电子还原能力,有利于光催化还原反应.  相似文献   

20.
颜送灵  唐黎明  赵宇清 《物理学报》2016,65(7):77301-077301
基于密度泛函理论的第一性原理计算, 研究了(LaMnO3)n/(SrTiO3)m(LMO/STO)异质界面的离子弛豫、电子结构和磁性质. 研究表明, 不同组分厚度比及界面类型时, 离子弛豫程度各不相同, 并且界面处的电子性质受此影响较大. 对于n型界面, 当LMO的厚度达到6个单胞层后, 电子会从LMO转移到STO, 转移的电子占据界面层Ti原子的3d电子轨道, 界面处出现二维电子气. 对于n型界面(LMO)n/(STO)2, 随着LMO厚度数n的增加, 由离子弛豫造成的结构畸变减小, 而界面处Ti原子周围电子的态密度和自旋极化却增大, 表明高厚度比的n型界面有利于产生高迁移率的二维电子气和自旋极化. 而对于p型(LMO)2/(STO)8界面, 在STO一侧基本没有结构畸变, 界面处无电子转移和自旋极化现象. 通过计算平均静电势发现n型和p型界面处的势差大小相差2 eV, 解释了p型界面不容易发生电荷转移的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号