首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
赵敏  孙棣华  田川 《中国物理 B》2012,21(4):48901-048901
By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.  相似文献   

3.
The nonlinear propagation of ion-acoustic waves in a collision-dominated double electron temperature plasma is considered. Accounting for the ion viscosity and the ion heat conductivity, it is shown by means of two-warm fluid equations that the nonlinear evolution of the ion-acoustic waves is governed by the Korteweg—de Vries—Burgers equation. Stationary shock solution of the KdV—Burgers equation is presented.  相似文献   

4.
《Physics letters. A》2002,306(1):45-51
By generalization of the Kawasaki–Ohta equation representing the interface dynamics, we report formulation of equations, which express mass transports, deterministic and stochastic, for nonlinear lattices. The equations are written characteristically by flow variable representations defined in the Letter. We found that the KdV equation and the Burgers equation, formulated by the flow variables, express mass transports in hydrodynamics and in stochastic processes, respectively. The representations lead to the conclusion that in nonequilibria we should observe a change not in a concentration but in concentration flows.  相似文献   

5.
余寒梅  程荣军  葛红霞 《中国物理 B》2010,19(10):100512-100512
Traffic congestion is related to various density waves, which might be described by the nonlinear wave equations, such as the Burgers, Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (mKdV) equations. In this paper, the mKdV equations of four different versions of lattice hydrodynamic models, which describe the kink--antikink soliton waves are derived by nonlinear analysis. Furthermore, the general solution is given, which is applied to solving a new model --- the lattice hydrodynamic model with bidirectional pedestrian flow. The result shows that this general solution is consistent with that given by previous work.  相似文献   

6.
Hong-Xia Ge  Rong-Jun Cheng 《Physica A》2008,387(28):6952-6958
The novel lattice hydrodynamic model is presented by incorporating the “backward looking” effect. The stability condition for the the model is obtained using the linear stability theory. The result shows that considering one following site in vehicle motion leads to the stabilization of the system compared with the original lattice hydrodynamic model and the cooperative driving lattice hydrodynamic model. The Korteweg-de Vries (KdV, for short) equation near the neutral stability line is derived by using the reductive perturbation method to show the traffic jam which is proved to be described by KdV soliton solution obtained from the KdV equation. The simulation result is consistent with the nonlinear analysis.  相似文献   

7.
8.
We reveal the origin and structure of self-consistent source extensions of integrable equations from the perspective of binary Darboux transformations. They arise via a deformation of the potential that is central in this method. As examples, we obtain in particular matrix versions of self-consistent source extensions of the KdV, Boussinesq, sine-Gordon, nonlinear Schrödinger, KP, Davey–Stewartson, two-dimensional Toda lattice and discrete KP equation. We also recover a (2+1)-dimensional version of the Yajima–Oikawa system from a deformation of the pKP hierarchy. By construction, these systems are accompanied by a hetero binary Darboux transformation, which generates solutions of such a system from a solution of the source-free system and additionally solutions of an associated linear system and its adjoint. The essence of all this is encoded in universal equations in the framework of bidifferential calculus.  相似文献   

9.
A quantum algorithm is presented for modeling the time evolution of a continuous field governed by the nonlinear Burgers equation in one spatial dimension. It is a microscopic-scale algorithm for a type-II quantum computer, a large lattice of small quantum computers interconnected in nearest neighbor fashion by classical communication channels. A formula for quantum state preparation is presented. The unitary evolution is governed by a conservative quantum gate applied to each node of the lattice independently. Following each quantum gate operation, ensemble measurements over independent microscopic realizations are made resulting in a finite-difference Boltzmann equation at the mesoscopic scale. The measured values are then used to re-prepare the quantum state and one time step is completed. The procedure of state preparation, quantum gate application, and ensemble measurement is continued ad infinitum. The Burgers equation is derived as an effective field theory governing the behavior of the quantum computer at its macroscopic scale where both the lattice cell size and the time step interval become infinitesimal. A numerical simulation of shock formation is carried out and agrees with the exact analytical solution.  相似文献   

10.
In this paper, new explicit and exact travelling wave solutions for a compound KdV-Burgers equation are obtained by using the hyperbola function method and the Wu elimination method, which include new solitary wave solutions and periodic solutions. Particularly important cases of the equation, such as the compound KdV, mKdV-Burgers and mKdV equations can be solved by this method. The method can also solve other nonlinear partial differential equations.  相似文献   

11.
The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram.Using nonlinear stability analysis, the Burgers, Korteweg-deVries(KdV) and modified Korteweg-deVries(mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model.  相似文献   

12.
The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram. Using nonlinear stability analysis, the Burgers, Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model.  相似文献   

13.
H.X. Ge  R.J. Cheng 《Physica A》2010,389(14):2825-663
The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but also connected with the microscopic car following model closely. The modified Korteweg-de Vries (mKdV) equation related to the density wave in a congested traffic region has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail for the car following model. We devote ourselves to obtaining the KdV equation from the original lattice hydrodynamic models and the KdV soliton solution to describe the traffic jam. Especially, we obtain the general soliton solution of the KdV equation and the mKdV equation. We review several lattice hydrodynamic models, which were proposed recently. We compare the modified models and carry out some analysis. Numerical simulations are conducted to demonstrate the nonlinear analysis results.  相似文献   

14.
Orbital and asymptotic stability for 1-soliton solutions of the Toda lattice equations as well as for small solitary waves of the FPU lattice equations are established in the energy space. Unlike analogous Hamiltonian PDEs, the lattice equations do not conserve the adjoint momentum. In fact, the Toda lattice equation is a bidirectional model that does not fit in with the existing theory for the Hamiltonian systems by Grillakis, Shatah and Strauss. To prove stability of 1-soliton solutions, we split a solution around a 1-soliton into a small solution that moves more slowly than the main solitary wave and an exponentially localized part. We apply a decay estimate for solutions to a linearized Toda equation which has been recently proved by Mizumachi and Pego to estimate the localized part. We improve the asymptotic stability results for FPU lattices in a weighted space obtained by Friesecke and Pego.  相似文献   

15.
利用耦合的Riccati方程组构造微分-差分方程精确解   总被引:2,自引:0,他引:2       下载免费PDF全文
杨先林  唐驾时 《物理学报》2008,57(6):3305-3311
通过引入耦合的Riccati方程组得到一个构造非线性微分-差分方程精确解的代数方法.作为实例,将该方法应用到了一般格子方程,相对论的Toda格子方程和(2+1)维Toda格子方程.借助符号计算软件Mathematica,获得了这些方程的扭结型孤波解和复数解.该方法也适合求解其他非线性微分-差分方程的精确解. 关键词: 耦合Riccati方程组 格子方程 相对论的Toda格子方程 (2+1)维Toda格子方程  相似文献   

16.
《Physics letters. A》2004,331(6):393-399
First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV–Burgers equation and obtain its new exact solutions.  相似文献   

17.
Starting from the linear integral equation for the solutions of the Korteweg-de Vries (KdV) equation, we obtain the direct linearization of a general nonlinear difference-difference equation. In a continuum limit this equation reduces to a general integrable differential-difference equation which contains e.g. the Toda equation and the discrete KdV and MKdV as special cases.  相似文献   

18.
陈海军  张耀文 《物理学报》2014,63(22):220303-220303
利用变分法和数值计算方法研究了空间调制作用下Bessel型光晶格中玻色-爱因斯坦凝聚体系中孤立子的稳定性, 给出了存在随空间非周期变化的线性Bessel型光晶格和非线性光晶格(原子之间非线性相互作用的空间调制)时, 各种参数组合下涡旋和非涡旋孤立子的稳定性条件. 首先, 利用圆对称的高斯型试探波函数得出描述体系稳定性参数满足的Euler-Lagrange方程和变分法分析体系稳定性所需要的有效作用势能的表达式. 然后, 根据有效作用势能是否具有局域最小值判断体系是否具有稳定状态, 得出体系具有稳定状态时参数所满足的条件. 最后, 利用有限差分法求解Gross-Pitaevskii方程验证变分法结果的正确性, 所得结果和变分法结果一致. 关键词: Bessel型光晶格 非线性光晶格 孤立子 稳定性  相似文献   

19.
H.X. Ge 《Physica A》2009,388(8):1682-1686
The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but is also closely connected with the microscopic car following model. The modified Korteweg-de Vries (mKdV) equation about the density wave in congested traffic has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail in the car following model. So we devote ourselves to obtaining the KdV equation from the lattice hydrodynamic model and obtaining the KdV soliton solution describing the traffic jam. Numerical simulation is conducted, to demonstrate the nonlinear analysis result.  相似文献   

20.
Jun Li  Yong Chen 《理论物理通讯》2020,72(11):115003-29
It has still been difficult to solve nonlinear evolution equations analytically. In this paper, we present a deep learning method for recovering the intrinsic nonlinear dynamics from spatiotemporal data directly. Specifically, the model uses a deep neural network constrained with given governing equations to try to learn all optimal parameters. In particular, numerical experiments on several third-order nonlinear evolution equations, including the Korteweg–de Vries (KdV) equation, modified KdV equation, KdV–Burgers equation and Sharma–Tasso–Olver equation, demonstrate that the presented method is able to uncover the solitons and their interaction behaviors fairly well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号