首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polycrystalline sample of Ba(Pr1/2Ta1/2)O3 was prepared by a high-temperature solid-state reaction technique. The crystal symmetry, space group and unit cell dimensions were derived from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of a single-phase tetragonal structure with the space group P4/mmm (1 2 3). Impedance and electric modulus analysis were used as tools to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The impedance analysis of the compound indicated a typical negative temperature coefficient of resistance behavior, and dielectric relaxation was found to be of non-Debye type. The frequency dependent maximum of the imaginary part of the electric modulus follows the Arrhenius law with activation energy of 0.15 eV. The ac conductivity data obeys double power law.  相似文献   

2.
The microwave dielectric properties of La1-xBx(Mg0.5Sn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La1-xBx(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La0.995B0.005(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. A maximum apparent density of 6.58 g/cm3, a dielectric constant (εr) of 19.8, a quality factor (Q × f) of 41,800 GHz, and a temperature coefficient of resonant frequency (τf) of −86 ppm/°C were obtained for La0.995B0.005(Mg0.5Sn0.5)O3 ceramics that were sintered at 1500 °C for 4 h.  相似文献   

3.
In the study, in order to develop the lead-free piezoelectric ceramics for actuator, transformer and other electronic-devices application, (K0.5Na0.5)(Nb0.9+xTa0.1)O3 + 0.5 mol% CuO + 0.2 mol% MnO2 ceramics were prepared by conventional mixed oxide method. The effects of B-site non-stoichiometry in [(K0.5Na0.5)] [(Nb0.9+xTa0.1)O3] ceramics on microstructure and piezoelectric properties were investigated. The density, electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric constant (d33), TC and TO-T of NKNT ceramics with x = 0.0065 showed the optimum values of 4.58 g/cm3, 0.427, 1554, 109 pC/N, 373 °C and 226 °C, respectively, suitable for piezoelectric motor, and transformer applications.  相似文献   

4.
[Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3-(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 [(1−x)LKNNS-xBCTZ] lead-free piezoelectric ceramics were prepared by the conventional solid state method, and effects of BCTZ content on the piezoelectric properties of LKNNS ceramics were mainly investigated. A stable solid solution has been formed between LKNNS and BCTZ, and a morphotropic phase boundary of (1−x)LKNNS-xBCTZ ceramics is identified in the range of 0 < x ≤ 0.02. The Curie temperature of (1−x)LKNNS-xBCTZ ceramics decreases with increasing BCTZ content. A higher ?r value and a lower tan δ value are demonstrated for the (1−x)LKNNS-xBCTZ ceramic with x = 0.02. The (1−x)LKNNS-xBCTZ ceramic with x = 0.02 has an enhanced electrical behavior of d33 ∼ 237 pC/N, kp ∼ 48.6%, ?r ∼ 1451, tan δ ∼ 0.037, and Tc ∼ 335 °C. As a result, (1−x)LKNNS-xBCTZ ceramics are promising candidate materials for the field of lead-free piezoelectric materials.  相似文献   

5.
The microwave dielectric properties of CuO-doped La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics were investigated with a view to their application in microwave devices. CuO-doped La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of CuO-doped La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics exhibited no significant variation of phase with sintering temperature. By adding 0.75 wt.% CuO, a dielectric constant of 20.07, a quality factor (Q × f) of 63,000 GHz, and a temperature coefficient of resonant frequency τf (−77.0 ppm/°C) were obtained when La2.98/3Sr0.01(Mg0.5Sn0.5)O3 ceramics were sintered at 1500 °C for 4 h.  相似文献   

6.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

7.
Effects of BiFeO3 (BFO) content on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCTZ) ceramics prepared by normal sintering in air were investigated. A stable solid solution is formed between BCTZ and BFO. The grain size gradually becomes smaller, and the ceramics become denser with increasing the BFO content. The Curie temperature, dielectric constant, and dielectric loss of BCTZ ceramics decrease simultaneously with the introduction of BFO. Moreover, the remanent polarization reaches a maximum at x = 0.2 mol%, and the coercive field continuously increases with increasing the BFO content due to the introduction of BFO with a higher coercive field. Improved piezoelectric properties (d33 ∼ 405 pC/N and kp ∼ 0.44) are demonstrated for the BCTZ ceramic with x = 0.2 mol%.  相似文献   

8.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

9.
Lead-free (Ba1−xCax)(Ti0.95Zr0.05)O3 (x = 0.05-0.40) (BCZT) ceramics were prepared by solid-state reaction technique. XRD results show that the samples in the composition range of 0.05 ≤ x ≤ 0.25 exhibit pure perovskite structures and undergo a polymorphic phase transitions from orthorhombic to tetragonal phase around room temperature. The biphasic structures are detected at x ≥ 0.30 and the dielectric peaks become broad and dielectric constants decrease with increasing Ca content. Ca replacement at Ba site leads to diffuseness, whereas Ca occupancy at Ti site leads to decrease of the Tc.  相似文献   

10.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

11.
La and Co co-doped BiFeO3 ((Bi1−xLax)(Fe0.95Co0.05)O3 (x=0, 0.10, 0.20, 0.30)) ceramics were prepared by tartaric acid modified sol–gel method. The X-ray diffraction patterns indicate a transition from rhombohedral structure to tetragonal structure at x=0.20, which has been confirmed by the Raman measurements. The band gap increases with increasing x to 0.20, and then decreases with further increasing x to 0.30. The structural transition has significant effects on the multiferroic properties. The remnant magnetization and saturate ferromagnetic magnetization decrease abruptly with increasing x to 0.10, and then gradually increase with further increasing x up to 0.30. The coercivity is significantly reduced with increasing La doping concentration. The ferroelectricity has been improved by La doping, and the polarization increases with increasing x to 0.10, then decreases with further increasing x up to 0.30. The simultaneous coexistence of soft ferromagnetism and ferroelectricity at room temperature in tetragonal Bi0.70La0.30Fe0.95Co0.05O3 indicates the potential multiferroic applications.  相似文献   

12.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

13.
陈东阁  唐新桂  贾振华  伍君博  熊惠芳 《物理学报》2011,60(12):127701-127701
采用传统的固相反应法,在1400–1500 ℃下烧结,制备得到Al2O3-Y2O3-ZrO2三相复合陶瓷.样品的结构、形貌和电性能分别用X射线衍射(XRD)、扫描电子显微镜(SEM)及介电谱表征.XRD表明此三相复合体系无其他杂相,加入Y2O3及ZrO2后使得Al2O3成瓷温度降低;SEM表明此体系晶粒直径为200–500 nm,并且样品随烧结温度的升高而变得更加致密,晶界更加清晰;介电损耗谱中出现峰值弛豫现象,根据Cole-Cole复阻抗谱得出其为非德拜弛豫. 关键词: 2O3-Y2O3-ZrO2三相陶瓷')" href="#">Al2O3-Y2O3-ZrO2三相陶瓷 介电弛豫 阻抗谱 热导率  相似文献   

14.
Solid solutions of bismuth layered (Bi2O3)(BaxMo1−xO3) (0.2≤x≤0.8, x is in step of 0.2) ceramics were prepared by conventional solid-state reaction of the constitutive oxides at optimized temperatures with a view to study its electrical properties. Powder X-ray diffraction has been employed for physical characterization and an average grain size of ∼16 to 22 nm was obtained. XRD study reveals the single phase structure of the samples. Dielectric properties such as dielectric constant (ε′), dielectric loss (tanδ) and ac electrical conductivity (σac) of the prepared ceramics sintered at various temperatures in the frequency range 101–107 Hz have been studied. A strong dispersion observed in the dielectric properties shows the relaxor type behavior of the ceramic. The presence of maxima in the dielectric permittivity spectra indicates the ferroelectric behavior of the samples. Impedance plots (Cole–Cole plots) at different frequencies and temperatures were used to analyze the electric behavior. The value of grain resistance increases with the increase in Ba ion concentration. The conductivity mechanism shows a frequency dependence, which can be ascribed to the space charge mainly due to the oxygen vacancies. The relaxation observed for the M″ (ω) or Z″ (ω) curves is correlated to both localized and long range conduction. A single ‘master curve’ for the normalized plots of all the modulus isotherms observed for a given composition indicates that the conductivity relaxation is temperature independent.  相似文献   

15.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

16.
Ba[(Fe0.5Nb0.5)1−xTix]O3 (x=0.2,0.4,0.6,0.8,0.85,0.9 and 0.95) solid solutions were synthesized by a standard solid-state reaction technique. X-ray diffraction at room temperature and dielectric characteristics over a broad temperature and frequency range were evaluated systematically. The structure of Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions changed from cubic to tetragonal with increasing x. A Debye-like dielectric relaxation following the Arrhenius law similar to that in Ba(Fe0.5Nb0.5)O3 was observed at lower temperature in the composition range 0.2≤x≤0.8, while the relaxor ferroelectric, diffused ferroelectric and normal ferroelectric behavior were observed for x=0.85,0.9 and 0.95, respectively. The process of the evolution of relaxor-like dielectric to ferroelectric suggested the changing from dilute polar micro-domains to polar micro-domains, polar micro/macro-domains and then polar macro-domains in the present ceramics.  相似文献   

17.
We report results on the structural and magnetic properties of the CoxNi1−xTa2O6 series of compounds by X-ray powder diffraction, magnetic susceptibility and magnetization measurements. X-ray refinements carried out by the Rietveld method show that these compounds crystallize in a P42/mnm tetragonal structure. Magnetic susceptibility curves show a broadened maximum witnessing that these compounds exhibit two-dimensional antiferromagnetic behaviors. All the CoxNi1−xTa2O6 compounds order below 10 K and present a large ion anisotropy. The magnetic properties have been determined in both the paramagnetic and antiferromagnetic state. In the hypothesis of two dimensional AF ordering, the near neighbor exchange constants (J1) and the next near neighbor exchange constants for two different paths (J2 and J'2) were determined. The composition dependence of the magnetic properties including ordering temperature, exchange constants and anisotropy factors are discussed. The drastic reduction of the ordering temperature for x=0.20 for CoxNi1−xTa2O6, suggest the hypothesis of a peculiar magnetic behavior for this composition.  相似文献   

18.
In this paper, low temperature sintering of the Bi2(Zn1/3Nb2/3)2O7 (β-BZN) dielectric ceramics was studied with the use of BiFeO3 as a sintering aid. The effects of BiFeO3 contents and the sintering temperature on the phase structure, density and dielectric properties were investigated. The results showed that the sintering temperature could be decreased and the dielectric properties could be retained by the addition of BiFeO3. The structure of BiFeO3 doped β-BZN was still the monoclinic pyrochlore phase. The sintering temperature of BiFeO3 doped β-BZN ceramics was reduced from 1000 °C to 920 °C. In the case of 0.15 wt.% BiFeO3 addition, the β-BZN ceramics sintered at 920 °C exhibited good dielectric properties, which were listed as follows: εr = 79 and tan δ = 0.00086 at a frequency of 1 MHz. The obtained properties make this composition to be a good candidate for the LTCC application.  相似文献   

19.
The effect of a dc bias field on the diffuse phase transition and nonlinear dielectric properties of sol-gel derived Ba(Zr0.2Ti0.8)O3 (BZT) ceramics are investigated. Diffuse phase transitions were observed in BZT ceramics and the Curie–Weiss exponent (CWE) was γ∼2.0. The dielectric constant versus temperature characteristics and the γ in the modified Curie–Weiss law, ε −1=ε m −1[1+(TT m ) γ /C1](1≤γ≤2), as a function of the dc bias field was obtained for BZT ceramics. The results indicated that γ is a function of dc bias field, and the γ value decreased from 2.04 to 1.73 with dc bias field increasing from 0 to 20 kV/cm. The dielectric constant decreases with increasing dc bias field, indicating a field-induced phase transition. The dc bias field has a strong effect on the position of the dielectric peak and affects the magnitude of the dielectric properties over a rather wide temperature range. The peak temperature of the dielectric loss does not coincide with the dielectric peak and an obvious minimum value for the dielectric loss at the temperature of the dielectric peaks is observed. At room temperature, 300 K, the high tunability (K=80%), the low loss tangent (≈0.01) and the large FOM (74), clearly imply that these ceramics are promising materials for tunable capacitor-device applications.  相似文献   

20.
Nominal composition of (ZnO)1−x(MnO2)x (0.005≤x≤0.2) ceramics have been prepared by the standard solid-state reaction method in three different sintering atmospheres: Ar, air, and reductive atmosphere. The effect of sintering atmosphere on the electron spin resonance (ESR), negative temperature coefficient of resistivity (NTCR), and photoluminescence (PL) properties of (ZnO)1−x(MnO2)x ceramics has been investigated in detail. The results demonstrate that the sintering atmosphere has significant effects on the ESR signals of (ZnO)1−x(MnO2)x; the NTCR of the samples sintered in air is larger than those sintering in Ar and reductive atmosphere; the deep-level PL related to oxygen vacancy increases when sintered in the reductive atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号