首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

2.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

3.
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.  相似文献   

4.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

5.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

6.
The [TMA]2Zn0.5Cu0.5Cl4 hybrid material was prepared and its dielectric spectra were measured in the 10−1 Hz-106 Hz frequency range and 200-305 K temperature interval. The dielectric permittivity showed a ferroelectric-paraelectric phase transition at 293 K. Double relaxation peaks are observed in the imaginary part of the electrical modulus, suggesting the presence of grain and grain boundary in the sample. The frequency dependent conductivity was interpreted in term of Jonscher's law: σ(ω)=σdc+n. The temperature dependent of the dc conductivity (σdc) was well described by the Arrhenius equation: σdcT=σo×exp(−Ea/kT).  相似文献   

7.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

8.
(Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 (M=Co, Ni and Zn) have been synthesized and investigated by means of X-ray diffraction, scanning electron microscope, electrical resistivity and magnetic susceptibility measurements. X-ray diffraction patterns show that all studied samples contain the nearly single ‘1212’ phase. They crystallize in a tetragonal unit cell with a=3.8028-3.8040 Å and c=12.0748-12.1558 Å. In (Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 system (M=Co or Ni), the superconducting critical temperature Tc decreases linearly with both Co and Ni concentrations and the rate of Tc decrease is around −6.5 and −7.0 K/at%, respectively. For (Tl0.5Pb0.5)Sr2Ca (Cu2−xZnx)O7 system, the dependence of Tc on the Zn dopant concentration deviates from a linear behavior and the Zn substitution suppresses Tc much less (−2.5 K/at%) than the Co and Ni substitutions. The suppression in Tc in Co and Ni doped samples are attributed to the magnetic pair-breaking mechanism and the reduction in the carrier concentration. The suppression of Tc in Zn doped samples is not caused by the reduction in carrier concentration which should remain constant, but rather due to nonmagnetic pair-breaking mechanism induced by disorder as well as the filling of the local Cu dx2y2 state due to the full d band of Zn ions.  相似文献   

9.
Lead-free piezoelectric ceramics (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 have been prepared by a conventional ceramics technique, and their microstructure and electrical properties have been investigated. The addition of NaSbO3 has no remarkable effect on the crystal structure within the studied doping content; however, an obvious change in microstructure took place. With increase in NaSbO3 content, the temperature from a ferroelectric to antiferroelectric phase transition increases, and the temperature for a transition from antiferroelectric phases to paraelectric phases changes insignificantly. Simultaneously, the temperature range between the rhombohedral phase transition point and the Curie temperature point becomes smaller. The piezoelectric properties significantly increase with increase in NaSbO3 content and the piezoelectric constant and electromechanical coupling factor attain maximum values of d33=160 pC/N and kp=0.333 at x=0.01. The results indicate that (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 ceramic is a promising lead-free piezoelectric candidate material.  相似文献   

10.
Ca1−xBixNb1−xCrxO3 (x=0.01-0.5) ceramic powders were synthesized using the sol-gel process. The single-phase solids can be presented at x=0.01 and 0.03. The coexistence of orthorhombic perovskite and the secondary phase of BiCrO3 was verified, as presented for x=0.05-0.5. Grains with a micro-cube topography were obtained for x=0.3-0.5. The average grain size is about 0.4 and 1.1 μm for x=0.3 and 0.5, respectively. The highest dielectric constant peak was measured at around 55 °C for x=0.5 and at 75 °C for x=0.3. The high dielectric constant was caused by the formation of barrier layers at the interface of the bi-phase mixed ceramics. Space charge polarization contributed to the observed behavior.  相似文献   

11.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

12.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

13.
The electrical property of a KTiOPO4 single crystal was studied by means of a dielectric spectroscopy method in the temperature range from −100 to 100 °C. Dielectric dispersion began at a temperature, TS=−80 °C. It is believed that this dielectric dispersion is related to the ionic hopping conduction, which arises mainly from the jumping of K+ ions. The activation energy concerned with hopping conduction is Ea∼0.20 eV above TS. TS=−80 °C can be the minimum temperature for the hopping K+ ion.  相似文献   

14.
Magnetic and EPR data have been collected for complex [Cu(L-Arg)2](NO3)2·3H2O (Arg=arginine). Magnetic susceptibility χ in the temperature range 2-160 K, and a magnetization isotherm at T=2.29(1) K with magnetic fields between 0 and 9 T were measured. The observed variation of χT with T indicates predominant antiferromagnetic interactions between Cu(II) ions coupled in 1D chains along the b axis. Fitting a molecular field model to the susceptibility data allows to evaluate g=2.10(1) for the average g-factor and J=−0.42(6) cm−1 for the nearest neighbor exchange coupling (defined as Hex=-∑JijSi·Sj). This coupling is assigned to syn-anti equatorial-apical carboxylate bridges connecting Cu(II) ion neighbors at 5.682 Å, with a total bond length of 6.989 Å and is consistent with the magnetization isotherm results. It is discussed and compared with couplings observed in other compounds with similar exchange bridges. EPR spectra at 9.77 were obtained in powder samples and at 9.77 and at 34.1 GHz in the three orthogonal planes of single crystals. At both microwave frequencies, and for all magnetic field orientations a single signal arising from the collapse due to exchange interaction of resonances corresponding to two rotated Cu(II) sites is observed. From the EPR results the molecular g-tensors corresponding to the two copper sites in the unit cell were evaluated, allowing an estimated lower limit |J |>0.1 cm−1 for the exchange interaction between Cu(II) neighbors, consistent with the magnetic measurements. The observed angular variation of the line width is attributed to dipolar coupling between Cu(II) ions in the lattice.  相似文献   

15.
MgB2 was successfully fabricated through diffusion-controlled three-layered (B-Mg-B) technique under high pressure. Due to melting temperature of Mg, the material was pre-heat treated at 600 °C between 1 and 48 h. Optimum pre-heat treatment condition was found to be 600 °C for 48 h. Then, the compacted material was grinded and pelletized under pressure of 2 ton. The pellets were heat treated at 600-900 °C for 1-48 h. Optimum heat treatment condition was determined to be 800 °C for 1 h for formation of almost pure MgB2. Diffusion coefficient was determined with Fick's law and EDX data. Diffusion coefficient value for B in Mg matrix and Mg in B matrix was determined to be 1.66×10−7 and 3.14×10−8 cm2/sn, respectively. Best Tc value (39.4 K) was obtained for material heat treated at 800 °C for 1 h. A symmetric hysteresis was obtained for the best MgB2 material and magnetization decreased with increase in the temperature and the applied magnetic field.  相似文献   

16.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

17.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

18.
A novel mixed cadmium zirconium cesium oxalate with an open architecture has been synthesized from precipitation methods at room pressure. It crystallizes with an hexagonal symmetry, space group P3112 (no. 151), a=9.105(5) Å, c=23.656(5) Å, V=1698(1) Å3 and Z=3. The structure displays a [CdZr(C2O4)4]2− helicoidal framework built from CdO8 and ZrO8 square-based antiprisms connected through bichelating oxalates, which generates channels along different directions. Cesium cations, hydronium ions and water molecules are located inside the voids of the anionic framework. They exhibit a dynamic disorder which has been further investigated by 1H and 133Cs solid-state NMR. Moreover a phase transition depending both upon ambient temperature and water vapor pressure was evidenced for the title compound. The thermal decomposition has been studied in situ by temperature-dependent X-ray diffraction and thermogravimetry. The final product is a mixture of cadmium oxide, zirconium oxide and cesium carbonate.  相似文献   

19.
The magnetic behavior of the diluted magnetic semiconductor Cd0.42Mn0.58In2S4 has been study by dc magnetization and ac susceptibility experiments. Zero field cooled and field cooled measurements reveal irreversibility below Tirr=2.60±0.15 K. Ac susceptibility data, performed as a function of the temperature and the frequency, confirm the spin-glass like behavior of the material with Tf=2.75±0.15 K. High temperature susceptibility data follow a typical Curie-Weiss law with θ=−74±1 K which suggests predominant antiferromagnetic interactions. The randomness of the magnetic ions, necessary to explain the magnetic behavior of the material, has been determined by X-ray powder diffraction experiments.  相似文献   

20.
Neutron powder diffraction studies showed that the ordered perovskites Ba2BiSbO6 (BBS) and BaSrBiSbO6 (BSBS) crystallize in a rhombohedral structure with the space group R3¯. The room-temperature lattice parameters are a=6.0351(2) Å; α=60.202(1)° and a=5.9809(2) Å; α=60.045(2)°, respectively. BBS exhibits a dielectric anomaly near room temperature which may be related to structural transition from the R3¯ to low-temperature monoclinic I2/m symmetry. BSBS shows a dielectric anomaly near 723 K which coincides with a phase transition from the rhombohedral to cubic (Fm3¯m) structure. In contrast to BBS, BSBS does not undergo structural transition below room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号