首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
La2O3 grown by atomic layer deposition (ALD) and thermally grown GeO2 are used to establish effective electrical surface passivations on n-type (1 0 0)-Ge substrates for high-k ZrO2 dielectrics, grown by ALD at 250 °C substrate temperature. The electrical characterization of MOS capacitors indicates an impact of the Ge-surface passivation on the interfacial trap density and the frequency dependent capacitance in the inversion regime. Lower interface trap densities can be obtained for GeO2 based passivation even though a chemical decomposition of the oxidation states occur during the ALD of ZrO2. As a consequence the formation of a ZrGeOx compound inside the ZrO2 matrix and a decline of the interfacial GeO2 are observed. The La2O3 passivation provides a stable amorphous lanthanum germanate phase at the Ge interface but also traces of Zr germanate are indicated by X-ray-Photoelectron-Spectroscopy and Transmission-Electron-Microscopy.  相似文献   

2.
We describe the structural properties and electrical characteristics of thin thulium oxide (Tm2O3) and thulium titanium oxide (Tm2Ti2O7) as gate dielectrics deposited on silicon substrates through reactive sputtering. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy, measurements. It is found that the Tm2Ti2O7 film annealed at 800 °C exhibited a thinner capacitance equivalent thickness of 19.8 Å, a lower interface trap density of 8.37 × 1011 eV−1 cm−2, and a smaller hysteresis voltage of ∼4 mV than the other conditions. We attribute this behavior to the Ti incorporated into the Tm2O3 film improving the interfacial layer and the surface roughness. This film also shows negligible degrees of charge trapping at high electric field stress.  相似文献   

3.
The lattice constants and elastic constants of the kesterite-type Cu2ZnSnS4 have been calculated using density-functional theory (DFT). The calculated lattice constants are in good agreement with the experimental data. The calculated elastic constants indicate that the bonding strength along the [1 0 0] and [0 1 0] directions is as strong as the one along the [0 0 1] direction. The high B/G ratio shows that the kesterite-type Cu2ZnSnS4 compound has ductile behavior. Finally, using the Debye model, the volume, bulk modulus and heat capacity as a function of temperature for the kesterite-type CZTS have been estimated at different pressures. The Debye temperature and Gruneisen parameter are 157 K and 2.28 at 300 K temperature, respectively. The present results can give some information for the design of the kesterite-type CZTS compounds, and these can also be used to stimulate future experimental and theoretical work.  相似文献   

4.
We have fabricated exchange-biased Co/Pt layers ((0.3 nm/1.5 nm)×3) on (0 0 1)-oriented Cr2O3 thin films. The multilayered films showed extremely smooth surfaces and interfaces with root mean square roughness of ≈0.3 nm for 10 μm×10 μm area. The Cr2O3 films display sufficient insulation with a relative low leakage current (1.17×10−2 A/cm2 at 380 MV/m) at room temperature which allowed us to apply electric field as high as 77 MV/m. We find that the sign of the exchange bias and the shape of the hysteresis loops of the out-of-plane magnetized Co/Pt layers can be delicately controlled by adjusting the magnetic field cooling process through the Néel temperature of Cr2O3. No clear evidence of the effect of electric field and the electric field cooling was detected on the exchange bias for fields as high as 77 MV/m. We place the upper bound of the shift in exchange bias field due to electric field cooling to be 5 Oe at 250 K.  相似文献   

5.
Polycrystalline BaCo1/2W1/2O3 (BCW) is prepared by the solid-state reaction technique. The X-ray diffraction study of the compound at room temperature reveals the monoclinic phase. The field dependence of the dielectric constant and the conductivity are measured in the frequency range from 50 Hz to1 MHz and in the temperature range from 300 to 413 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency is performed. The frequency-dependent maxima in the imaginary impedance are found to obey an Arrhenius law with an activation energy=0.86 eV. The frequency-dependent electrical data are also analysed in the framework of the conductivity and modulus formalisms.  相似文献   

6.
The [TMA]2Zn0.5Cu0.5Cl4 hybrid material was prepared and its dielectric spectra were measured in the 10−1 Hz-106 Hz frequency range and 200-305 K temperature interval. The dielectric permittivity showed a ferroelectric-paraelectric phase transition at 293 K. Double relaxation peaks are observed in the imaginary part of the electrical modulus, suggesting the presence of grain and grain boundary in the sample. The frequency dependent conductivity was interpreted in term of Jonscher's law: σ(ω)=σdc+n. The temperature dependent of the dc conductivity (σdc) was well described by the Arrhenius equation: σdcT=σo×exp(−Ea/kT).  相似文献   

7.
In this work the Mn5Si3 and Mn5SiB2 phases were produced via arc melting and heat treatment at 1000 °C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn5Si3 and near single-phase Mn5SiB2 microstructures. The magnetic behavior of the Mn5Si3 phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn5SiB2 phase shows a ferromagnetic behavior presenting a saturation magnetization Ms of about 5.35×105 A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments.  相似文献   

8.
In this work, ((1−x)Ba(Fe1/2Ta1/2)O3-xBa(Zn1/3Ta2/3)O3), ((1−x)BFT-xBZT) ceramics with x = 0.00–0.12 were synthesized by the solid–state reaction method. X-ray diffraction data revealed that both the powders and ceramics were of a pure-phase cubic perovskite structure. All ceramics showed large dielectric constants. For the x = 0.12 sample, a very high dielectric constant (>20,600) was observed. A lowering in the dielectric loss compared to pure BFT ceramics was observed with the BZT addition. The impedance measurements indicated that BZT has a strong effect on the bulk grain and grain boundary resistance of BFT ceramics. These results are in agreement with the measured dielectric properties. Based on dielectric and impedance results, (1−x)BFT-xBZT ceramics could be of great interest for high performance dielectric materials applications due their giant dielectric constant behavior.  相似文献   

9.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

10.
BaTiO3+MgFe2O4 material system was synthesized by hybrid chemical process using chlorides and nitrates of barium, titanium, iron, and magnesium. Magnetic properties of the composite samples measured as a function of annealing conditions indicated soft magnetic behavior. Saturation specific magnetization from 8 21 emu/g was observed for samples annealed at temperature between 950 and 1150 °C. Variation of specific saturation magnetization with respect to annealing temperature was related with the distribution of Fe cations in the tetrahedral and octahedral sites of MgFe2O4. Electrical properties of the samples annealed at different temperatures were measured to analyze the coexistence of ferroelectric phase. Dielectric constant varying from 15 to 200 with respect to frequency was observed for samples annealed from 950 to 1150 °C.  相似文献   

11.
A new self-activated yellow-emitting Zn2V2O7 phosphor was synthesized by high temperature solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the sample with monoclinic formation of Zn2V2O7. The excitation and emission spectra indicated the phosphor can be efficiently excited by near ultraviolet (NUV) light in 220–400 nm range and exhibit a bright broad yellow emission with the highest emission intensity at 531 nm. The broad emission band from 400 to 650 nm can be attributed to the charge transfer transition in the VO4 tetrahedra, which suggests that the phosphor is a promising yellow phosphor applied for white light-emitting diodes (WLED).  相似文献   

12.
The complex perovskite oxide In(Mg1/2Ti1/2)O3 (IMT) is synthesized by a solid state reaction technique. The X-ray diffraction of the sample at 30 °C shows a monoclinic phase. The dielectric properties of the sample are investigated in the temperature range from 143 to 373 K and in the frequency range from 580 Hz to 1 MHz using impedance spectroscopy. An analysis of the dielectric constant ε′ and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The Cole-Cole model is used to explain the relaxation mechanism in IMT. The scaling behavior of imaginary part of electric modulus (M″) shows that the relaxation describes the same mechanism at various temperatures. The electronic structure and hence the ground state properties of IMT is studied by X-ray photoemission spectroscopy (XPS). The valence band XPS spectrum is compared with the electronic structure calculation. The electronic structure calculation indicates that the In-5s orbital introduces a significant density of states at the Fermi level, which is responsible for a high value of conductivity in IMT.  相似文献   

13.
Magnetoresistance material Sr2FeMoO6 with double perovskite structure was synthesized by microwave sintering method using SrCO3, Fe2O3 and MoO3 as raw materials, with MnO2 for microwave absorber. The phase structure, magnetic and electrical transport properties were investigated by X-ray powder diffraction (XRD) and vibrating-sample magnetometer. XRD analysis shows that the as-synthesized sample is Sr2FeMoO6 with tetragonal crystal structure and I4/mmm space group. The unit cell parameters are a=0.5587 nm, c=0.7894 nm, volume=0.2464 nm3. The calculated grain size of the sample is 31.62 nm, which is obtained by the Scherrer formula using the diffraction data. Magnetism testing results show that the sample Sr2FeMoO6 is ferromagnetic with the magnetic transition temperature of about 380 K. Under 1.0 T magnetic field, the saturation and spontaneous magnetization of Sr2FeMoO6 is 1.25 μB/f.u. and 1.00 μB/f.u. at room temperature. The magnetoresistance ratio of the sample is 28%. Electrical transport properties testing results indicate that the sample exhibits typical semiconductor behavior. The conductive mechanism of Sr2FeMoO6 is highly dependent on temperature: within the temperature range of 100–300 K, the mechanism is attributed to the small polaron variable-range hopping model; while it is ascribed to the adiabatic small polaron model within the temperature range of 80–100 K.  相似文献   

14.
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g4T2g) and at ∼2.83 and ∼2.76 eV (4A2g4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts.  相似文献   

15.
Physical and electrical properties of sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate are investigated. The as-deposited films and interfacial layer formation have been analyzed by using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). It is found that directly deposited Y2O3 on n-GaAs exhibits excellent electrical properties with low frequency dispersion (<5%), hysteresis voltage (0.24 V), and interface trap density (3 × 1012 eV−1 cm−2). The results show that the deposition of Y2O3 on n-GaAs can be an effective way to improve the interface quality by the suppression on native oxides formation, especially arsenic oxide which causes Fermi level pinning at high-k/GaAs interface. The Al/Y2O3/n-GaAs stack with an equivalent oxide thickness (EOT) of 2.1 nm shows a leakage current density of 3.6 × 10−6 A cm−2 at a VFB of 1 V. While the low-field leakage current conduction mechanism has been found to be dominated by the Schottky emission, Poole-Frenkel emission takes over at high electric fields. The energy band alignment of Y2O3 films on n-GaAs substrate is extracted from detailed XPS measurements. The valence and conduction band offsets at Y2O3/n-GaAs interfaces are found to be 2.14 and 2.21 eV, respectively.  相似文献   

16.
The complex perovskite oxide a barium samarium niobate (BSN) synthesized by solid-state reaction technique has single phase with cubic structure. The scanning electron micrograph of the sample shows the average grain size of BSN∼1.22 μm. The field dependence of dielectric response and loss tangent were measured in the temperature range from 323 to 463 K and in the frequency range from 50 Hz to 1 MHz. The complex plane impedance plots show the grain boundary contribution for higher value of dielectric constant in the low frequency region. An analysis of the dielectric constant (ε′) and loss tangent (tan δ) with frequency was performed assuming a distribution of relaxation times as confirmed by the scaling behaviour of electric modulus spectra. The low frequency dielectric dispersion corresponds to DC conductivity. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with an activation energy of 0.71 eV. The frequency dependence of electrical data is also analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behaviour of imaginary part of electric modulus M″ and dielectric loss spectra suggest that the relaxation describes the same mechanism at various temperatures in BSN. All the observations indicate the polydispersive relaxation in BSN.  相似文献   

17.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

18.
Anisotropic magnetic properties of single crystalline RAu2Ge2 (R=La, Ce and Pr) compounds are reported. LaAu2Ge2 exhibits a Pauli-paramagnetic behaviour whereas CeAu2Ge2 and PrAu2Ge2 show an antiferromagnetic ordering with Nèel temperatures TN = 13.5 and 9 K, respectively. The anisotropic magnetic response of Ce and Pr compounds establishes [0 0 1] as the easy axis of magnetization and a sharp spin-flip type metamagnetic transition is observed in the magnetic isotherms with H // [0 0 1]. The transport and magnetotransport behaviour of these compounds, in particular LaAu2Ge2, indicate an anisotropic Fermi surface. The magnetoresistivity of CeAu2Ge2 apparently reveals the presence of a residual Kondo interaction. A crystal electric field analysis of the anisotropic susceptibility in conjunction with the experimentally inferred Schottky heat capacity enables us to propose a crystal electric field level scheme for Ce and Pr compounds. For CeAu2Ge2 our values are in excellent agreement with the previous reports on neutron diffraction. The heat capacity data in LaAu2Ge2 show clearly the existence of Einstein contribution to the heat capacity.  相似文献   

19.
The structural magnetic and magneto-transport properties of double perovskite system Ba2−xSrxFeMoO6 (0?x?1.0) prepared in bulk polycrystalline form are reported in this paper. X-ray diffraction analysis showed that samples are single phase and the lattice constants decreases with increase in the Sr content. The degree of Fe-Mo ordering has been found decreasing in the series with an increase in the Sr content. Parent compound Ba2FeMoO6 exhibits saturation magnetic moment value of 3.54 μB/f.u. at 85 K in a magnetic field of 6000 Oe. Temperature dependence of resistivity shows metallic behavior for all the samples. The magneto-resistance (MR) of the compound with x=0.4 is higher than that of the other samples. At room temperature this system shows a saturation magnetization value of 1.73 μB/f.u. and MR value of 7.08% (1 T). The observed variations in the structural and magnetic properties are attributed to the change of chemical pressure due to the substitution of Sr in place of Ba. The effect of antisite disorder (ASD) defects on magneto-transport properties is studied in more detail.  相似文献   

20.
Nanocrystalline Zn0.5Mn0.5Fe2O4 was synthesized through the pyrolysis of polyacrylate salt precursors prepared via in situ polymerization of the metal salts and acrylic acid. The pyrolysis behavior of the polymeric precursors was studied by use of thermal analysis. The as-obtained product was characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction (ED) pattern, scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) analysis. The results revealed that the particle size is in the range of 15–25 nm for Zn-Mn ferrites with good crystallinity. Magnetic properties of the sample at 300 K were measured using a vibrating sample magnetometer, which showed that the sample exhibited characteristics of superparamagnetism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号